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Abstract

The research performed under AFOSR grant no. AFOSR-80-0055 during the

period January 1, 1981 - December 31, 1981 is reported. The theory

a formulated and results obtained are fully documented by seven published

papers which appear in Appendices A - G of this report and which represent

a complete account of the work performed during the 1981 year. In particular,

a new and basic theory of ion-ion recombination in a dense gas has been

developed from basic microscopic principles and is fully described in

- Appendix F.

.
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1. Refereed Research Publications under AFOSR Grant

1.1 January 1, 1980 - December 31, 1980

1. "Charge-Transfer in Three-Body Ion-Ion Recombination at Low Gas

V Densities", Int. J. Quant. Chem.: Quant. Chem. Symp. 14, 477-482

(1980).

2. "Ion-Ion Recombination in (X++Y +X) Systems at Low Gas Densities:

I. Symmetrical Resonance Charge-Transfer Contribution", J. Phys. B:

Atom. Molec. Phys. 13, 3649-3664 (1980).

* 3. "Three-Body Recombination of Rare-Gas Atomic Ions X with F- in a

Low-Density Gas X", with T. P. Yang, J. Chem. Phys. 73, 3239-3245

(1980).

4. "Theoretical Treatment of Collisions of Rydberg Atoms with Neutral

Atoms and Molecules. The Semiquantal, Impulse and Multistate-

Orbital Theories", Phys. Rev. A 22, 2408-2429 (1980).

5. "Ion-Ion Recombination in (X++Y-+Z) Systems at Low Gas Densities. II.

Elastic Ion-Neutral Collisions", J. Phys. B: Atom. Molec. Phys. 14,

* 915-934 (1981).

Separate copies of reprints of all of these publications (1) - (6) have

already been forwarded during the course of the 1981-year and were fully documented

in the interim report for the previous year (1980).

1.2 January 1, 1981 - December 31, 1981

6. "Thermal Collisions of Rydberg Atoms with Neutrals", J. Phys. B:

-Atom. Molec. Phys., L657-663 (1980).

7. "Vibrational Deactivation of Oxygen Ions in Low Velocity 0 +(X 31

2

v=l) + 02 (X 
3E-, v=0) Collisions", with T. F. Moran, K. J. McCann,

M. Cobb and R. F. Borkman, J. Chem. Phys. 74, 2325-2330 (1981).
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8. "Ion-Ion Recombination as a Function of Ion and Gas Densities",

uChem. Phys. Letts. 80, 541-546 (1981).

9. "Exact Closed Form Solution of the Generalized Debye-Smoluchowski

Equation", Phys. Rev. Letts. 47, 163-166 (1981).

10. "Ion-Ion Recombination in Dilute and Dense Plasmas", Int. J. Quant.U

Chem.: Quant. Chem. Symp. 15, 715-727 (1981).

11. "Theory of Ion-Ion Recombination", Phil. Trans. Roy. Soc. (London)

A 304, 447-497 (1982).

12. "Analytical Solutions of the Debye-Smoluchowski Equation for Geminate

and Homogeneous Recombination and for Fluorescence Quenching",

Phys. Rev. A 25, 3403-3406 (1982).

Copies of all of the above papers #6-12 appear as Appendices A - G of this

interim report. These papers represent the research work performed during 1981,

[ under the present AFOSR grant.

2. Papers Presented at Scientific Meetings

1. "Basic Microscopic Theory of Ion-Ion Recombination", Invited Lecture

presented at International Symposium on Atomic, Molecular and Solid State

Theory, Florida, March 9-14, 1981

* 2. "Basic Microscopic Theory of Neutralization and of Chemical Reactions in

Dense Gases", Special Long Paper (30 mins.) delivered at 34th Annual

Gaseous Electronics Conference, Boston, Mass., October 20-23, 1981.

3. "Theory of Chemical Reactions in Dense Gases", delivered at Thirteenth

Annual Meeting of the Division of Electron and Atomic Physics (APS/DEAP),

New York, December 3-5, 1981.
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3. Special Highlights: New Theoretical Developments in Present Research

A new and basic theory of ion-ion recombination as a function of gas

density N has been developed (M. R. Flannery, Phil. Trans. Roy. Soc. A) from

basic microscopic principles. A key equation for the distribution in phase

space of ion pairs has been derived together with an expression for the

resulting recombination coefficient a. Further development of the theory leads

to interesting insights to a full variation with N of a, which is shown to yield

the correct limits at low and high N. The recombination rate a is determined

by the limiting step of the rate aRN for ion reaction and of the rate aTR for

ion transport to the reaction zone. An accurate analytical solution of the time-

dependent Debye-Smoluchowski equation which is a natural consequence of this

theory, has been provided, for the first time, for transport/reaction under a

general interaction V in the cases of an instantaneous reaction (aRN > a
RN TR)

and of a finite rate (aRN a TR) of reaction within a kinetic sink rendered

compressible via variation of gas density. Expressions for the transient

* recombination rates a(t) have then been derived and illustrated. The exhibited

time dependence lends itself to eventual experimental verification at high N.

A theory which investigates the variation of a with ion density N± has

" also developed. Here the ion-ion interaction V can no longer be assumed ab-

initio to be pure Coulomb but is solved self-consistently with the recombination.

Recombination rates for various systems have been illustrated as a function of

N via a simplified method for the reaction rate. Finally, two theoretical

procedures for the solution of the general phase-space ion distributions have

been proposed.
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Thermal Collisions of Rydbera Atoms with Neutrals, J. Phys. B: Atom.
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LETrER TO THE EDITOR

Thermal collisions of Rydberg atoms with neutrals

M R Flannery
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Received 17 July 1980

Abstract. A new theoretical method outlined here for an important inelastic mechanism
based on A-B* encounters in A-B(n) thermal collisions indicates a substantial contribution
to I-changing transitions which therefore cannot be viewed as proceeding via (e-A)

encounters alone. Recent descriptions of 1-changing thermal collisions which are based on
an (e-A) impulse treatment appear defective in that they disregard certain impulse validity
criteria and yield results which greatly exceed the upper limit specified by the basic impulse
expression, and do not recognise the above important inelastic mechanism associated with
the non-inertiality of the core.

In the collision process,

A(i) + B(n)-. A(j) + (1)

between an incident atom (or molecule) A and a target atom B initially in a highly
excited state with principal quantum number n, energy and momentum changes to the
Rydberg electron (labelled 1) can be assumed, under certain conditions (see Flannery
1980 and below), to occur via a collision of 1 with the projectile A (labelled 3). A (1-3)
inelastic encounter includes the additional possiblity of simultaneous (i-aj) transitions
in the internal state of A. Based on this premise, a semiquantal treatment was
developed (Flannery 1970, 1973) mainly for the ionisation channel in (1) and was
recently derived (Flannery 1980) from the basic quantal impulse expression (d Cole-

I man 1969) in which the wavefunction for the ejected electron is replaced by a plane
wave.

The three basic assumptions within the impulse approximation to A-B(n) collisions
" become fully transparent from a derivation (Flannery 1980) based on the two-potential
*: formula and they are as follows.

(i) The interactions V12 and V3; of I and 3 with the core B" (labelled 2) are switched
off during the (1-3) collision time and V12 is invoked only to establish the initial and
final quantal states of the target system.

(ii) The distortion of the motion of the projectile 3 in the field V32 due to the core 2
is neglected when interacting with both 2 and with the Rydberg electron 1.

(iii) Inelastic transitions in B are prohibited in direct (A-B+) encounters.
Although (i)-(iii) may be justified for many kinds of A-B(n) direct collision

processes at sufficiently high n and collision speeds v3 >> v1, the orbital speed of the
Rydberg electron, conditions (ii) and (iii) can be seriously violated, particularly when
Vt << v 3. Various implications of (i)-(iii), discussed below, cast serious doubts on the
overall validity of various models recently proposed (Matsuzawa 1979 and references

0022-3700/80/220657 +07$01.50 © 1980 The Institute of Physics L657
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L658 Letter to the Editor

therein, Hickman 1979, de Pruneli and Pascale 1979) for angular momentum I-
changing and quenching collisions between B(nl) and rare-gas atoms at thermal

U energies (when vI >> v3), a subject of great current experimental interest and activity
(Hugon et al 1979, 1980 and references therein, Gallagher et al 1977). Moreover, the
models are based on further simplification such as a Born or 8-function reduction with-
in the basic impulse expression and, as such, entail additional validity criteria. The
models yield results greatly in excess of the actual upper limit imposed by the basic
impulse expression (d Flannery 1980). Also they neglect the effect of thermal (2-3)

* collisions which are, in fact, important.
(iv) Although not essential to the impulse treatment, 'on-the-energy-shell' (1-3)

encounters in all applications to A-B(n) collisions are tacitly assumed, a procedure
valid only in the high-energy or weak-binding limit.

Assumptions (i)-(iii) above imply important conditions of special significance to
A-B(nl) thermal collisions.
Condition A. Switching off the core interactions (V12 + V32) during the (1-3) collision
time r, implies that energy can be controlled only to within an imprecision &E, - fi/-c
during the collision, i.e. the energy dependence of the electron-1-projectile-3 cross
section 0 13 must not exhibit too rapid a variation as occurs, for example, in the
neighbourhood of an electron-atom resonance in which a negative ion A- is
temporarily formed, or in the vicinity of a Ramsauer minimum evident for e-Ar, Kr and

r "Xe scattering. This implication is ignored by Matsuzawa (1979) in his resonance and
-changing studies, by Hickman (1979) and by others (e.g. de Prunei6 and Pascale).

• When vI >> v3, m -= AIn (au) where A I(ao) is the (e-A) interaction distance such that
during i, the energy imprecision AE, - (AIn)-' au is comparable with the small impact
energy . For v3 > V, however, -E1  v3/AI which is very much less than V2 the

relative energy over which o 13 generally varies slowly.
Condition B. The momentum P transferred (impulsively) to I during the collision time
r, must be very much greater than the momentum imparted to I during the same time
via the force F due to its interaction V12 with the core, i.e.

P>> I F dt -(46. 11 - V V1)r-n (2a)

where 0,1 is the electronic wavefunction for the Rydberg electron with orbital period
T. - n 3 au for each I such that

,: 7.<< T.(I+)P (2b)

If V12 varies sufficiently slowly (but need not be necessarily small!) over the range
AI of the collision interaction V13, such that the force F( - - V12) due to the core is
small in comparison with the impulsive force (-VV3) due to the Rydberg electron-
projectile interaction, then (2) is satisfied; in this sense V12 can be regarded as
'quasiclassical'.

For ionising collisions, P ; n-, then r<< T. for circular orbits (I-n) and 7,<< T./n
for highly eccentric orbits (I-0). Hence, the requirement r<<2 n covers electron
ejection from all orbits.. For non-ionising collisions, P by (2) cannot become arbitrarily
small, which could occur for quasi-elastic or i-changing collisions. At thermal energies,
the electron speed vI - n-' au is greater than the incident speed v3 - 10-4 au of A for
most n of interest, and the collision time r, - A In for e-rare-gas atom scattering (where
A1 -(1-7)ao) such that (2) implies that P >iA,/n2 (l+ 2). The angular momentum

1.



Letter to the Editor L659

change (for fixed n) due to (e-A) impulsive encounters at R1 2 from B" must satisfy

AL - P(Ri 2) -P[3n 2-l1 + 1)] >> 2A1[3n
2 -/(I+ 1)]/n2(I+ ) (3)

U which is, in general, fulfilled only at the highest initial I when the permitted AL >>
A,/( - n). Small initial I require large changes AL >>A 1 for validity of the impulse
model (since then the momentum imparted by the core on the highly elliptical orbits
becomes considerably strengthened over that for circular orbits). The above consi-
derations are absent in any previous i-changing study (Matsuzawa K-79, Hickman
1979, de Prunel6 and Pascale 1979).
Condition C. Since the distortion of V32 on the projectile 3 is neglected, the contribu-
tion to the basic impulse T-matrix element from (2-3) collisions is real and is
non-vanishing only for elastic transitions in the target (Flannery 1980), the cross section
for all elastic and inelastic events is, from the optical theorem, given in both the basic
impulse expression and the semiquantal treatment by (Flannery 1980),

o4~(v3)- JIgi(k 1)(2[Vi oT(v 3 dk(4113 V)=1 3VIk (4)

where jg 2 is the probability that the Rydberg electron has momentum k1, where 13 is
" .the total cross section for all elastic and inelastic (1-3) collisions at relative speed V 13 and

where V3 is the speed of the projectile A in the (A-Bk) centre-of-mass reference frame.
This cross section (4) is an upper limit to any collision process satisfying specific criteria
for the validity of the impulse approximation and states that the rate (V3o) for all
A-B(n) elastic and inelastic processes is essentially limited to the total rate of free
Rydberg e-A collisions. For v, >> v3, as in thermal collisions, then

r 3' (V3)= (vll 3 (UV))/Iv3 -i 13(Vl)/V3 (5)

where the average is taken over the distribution in orbital speed vi of the Rydberg
electron. de Prunel6 and Pascale (1979) (and also Matsuzawa 1979) have correctly
conjectured that (5) can be deduced from the semiquantal formulation of A-B(n)
collisions. However, many treatments (Matsuzawa 1979, Hickman 1979) of I-changing
collisions alone, which are simple derivatives of the basic impulse expression, yield

*results much larger than (4) or (5) in violation of the impulse upper limit. Curiously
enough, their apparent agreement with experiment does not substantiate the assertion
that i-changing collisions at thermal energies originate solely from slow Rydberg
e-atom encounters. That the (1-3) impulse upper limit yields values much lower than
experiment (see table 1 and semiquantal results calculated by de Prunel6 and Pascale
(1979)) simply infers that an important mechanism, discussed below and based on 2-3
encounters, has not been acknowledged.
Condition D. Assumption (ii) based on the neglect of distortion of V32 on 3 while
interacting with 1 implies that 1 and 2 behave as separate and as independent scatterers.
This is valid provided (a) that the (1-2) separation R 12 2-n2ao >>A 1 .2, the scattering
lengths or amplitudes for (1-3) and (2-3) collisions, and (b) that the reduced wavelength
X 3 for (i-3) relative motion is very much less than R12, so that AI is not affected by the
presence of A 2 (and vice versa). In general, A13 << n 2 for high impact speeds V3 >> v 1, and
for thermal-energy collisions when vI >>v 3 such that A3 - VI -n; and A 1 ,2 

<< n2.
Moreover, for (2-3) collisions at thermal energies A23 - k - 1 10- (see table 1). Hence

I"-
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R1 2 >> A 3Ai such that multiple scattering can be neglected. Curiously enough, condi-
tion D is the one most easily satisfied in A-B(n) collisions and is the only condition of all
here which receives consideration in previous studies.
Condition E. At thermal energies distortion of 3 due to the core 2 cannot be ignored, as
in assumption (ii), and the cross section for B*-A elastic thermal collisions are large,
about 10 2 (cf Dalgarno 1970). The impulse expression customarily adopted (cf
Coleman 1969) must be appropriately generalised. The result (Flannery 1980) involves

* a nine-dimensional integral for the T matrix rather than the usual three dimensional
integral, and appears valuable only in promoting deeper understanding. This condition

m of undistortion is closely related to D.
Condition F. However, the impulse model focuses attention on the (1-3) collision,
whether distorted by V32 or not and as such does not contain any inelastic electronic
transitions due to direct (2-3) encounters (assumption (iii)). Effective allowance for
inelastic transitions via (2-3) collisions due to the non-inertiality of the target core 2 can
be readily obtained (Flannery 1980). Let the impulse procedure treat the (1-3)
encounter, for which purpose it has been designed. Then in the absence of the
interaction V 13 between the incoming projectile 3 and the Rydberg electron 1, the
Hamiltonian for the complete A-B(n) system of reduced mass MAn is

2 h2 2

V = -_ - -
2 V.+ V2 3 (')- (6)

2M 1 2 " 2MAB r 6

where the vector R' of 3 relative to 2, in terms of its position R relative to the (1-2)
centre-of-mass and r the vector separation of (1-2) of reduced mass M 12 is given by

R'= R +(MI/M)r M=MI+M 2  (7)

where M is the mass of particle i. The (2-3) interaction can then be expanded as

I V 23(R') = V23(R) + (M 1/M)r V V 2 3(R)+.... (8)

The full scattering solution for H can be expanded in terms of the target basis
{4,.(r)}, and a hierarchy of quantal and semiclassical approximations exist (to various
degrees of sophistication) which are based on matrix elements,

V1 (R) = (.Oi(r)I V23(R')J i(r))

Ef = V 23 (R)8 + (M 1/M)(O,(r)r4,,(r)) VV 2 3 (R) +.... (9)

In particular, Flannery (1980) has shown in the sudden limit to a semiclassical
analysis, when the exponential phase factors (ieftt/h) can be ignored, (i.e. the collision
time t is assumed small in comparison with the time h/ef. for transitions between highly
excited levels n and f with energy separation cf. or else the important levels n and f are
assumed degenerate as in 1-changing transitions), that the differential cross section for
(i Df) transitions in the target B via A-B + (2-3) encounters isdoi= B ~, 0oo))1 O2

(dn) -IB,~, t (--) (10)

where (dO' 23/dfl) is the differential cross section for (2-3) elastic scattering and where

Bf,(p, t - oo) f (r) exp[i r J V 23(R(t)) dt]1.(r)) (11)

is the probability amplitude at impact parameter p for the i-f transition. Since

....
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(-V V23) in (11) is the force on 2 due to 3, the 'impulse'

* F 23 dt = M 2 3 (V2 3 - V23) = M 2v (12)

" is the momentum M2v transferred to the core 2, where V23 and v23 are the initial and
final velocities of the (2-3) collision system with reduced mass M23. Thus, the

* . probability of the (i -*f) transition is

IB,(p, t - 0)12 = I(4,f(r)l exp(iMt 2v. r)l1t,(r)12  (13)

- the absolute square of the inelastic atomic form factor which, when summed over al!
final states, yields unity. A simple interpretation of (13), based on the recognition that
the Rydberg electron which is bound to the core at rest before the collision, finds itself
relative to a moving core after the collision, can be provided (Flannery 1980). Account
of the translational factor so introduced (as in hydrogenic travelling orbitals 46T) and the
sudden approximation I(NTi ,)12 for the transition probability yields (13).

The total cross section for all elastic and inelastic transitions based on (2-3)
collisions from (10) and (13) is given by

=(V32) c2r3(V32) (14)

which is therefore an upper limit. A highly accurate representation of the integral
elastic cross section is provided by the semiclassical expression (see Dalgarno 1970),

1 103 am... 3 A.2/3

0723V3v2)= 1O 6 8 8 xlO3(-"An) ao (15)

where aaO is the polarisability of 3 and where k3(au) is the momentum of the (Ak-B)
system with reduced mass MA(amu). A preliminary assessment based on the upper
limits (5) and (15) can now be made.

The table illustrates (5) and (15) for thermal (520 K) collisions of Rb(15F) with rare
gases RG(He, Ne, Ar, Kr and Xe) for which vI >> v3. The (e-Ro) cross section a 13(vI)
were obtained from the phaseshifts of Yau etal (1979, 1980) and were so normalised as
to reporduce measurements (where available) of the scattering length A 1 (since for He,
Ne and Ar the calculated scattering lengths were 13% lower, 11% lower and 40%
higher than the respective measurements (cf Yau et al 1979, 1980)). The first value inS the range o1 3 arising from (1-3) elastic collisions corresponds to 0'1 3 = 41rA 1 at zero

Table 1. Maximum cross sections (A2) for Rb(1 5F)-rare-gas (no) collisions at 520 K based
on the sum of (e-RG) elastic encounters with cross section a'0 and on (Rb*-RG) elastic
encounters with cross section o2. The relative speed, momentum and polarisability of the
incident Ro atom are V3, k3 and a respectively. The measurements (Exp) are taken from
table I of Hugon et al (1979).

nO v3 (10 au) k3(au) a(ao) o203t(A 2) a a(A ) (10, 23 )A Exp(A

He 7,757 5.405 1.384 2 .9 5 2t (4.282_4.912) (7.232-7.862) (8- 1 16)2
Ne 3.754 11.17 2.666 7.412 (5.63'-1.742) (7.982_9.152) -

Ar 2907 1442 1107 2.27 (1.82 -3.522) (4-09-262 (25+0.5)3
Kr 2.332 17.98 16.74 3.473 (1.784-3.663) (2.134-7.133) -

Xe 2108 1986 2726 5.133 (6804-1.004) (7314-1.514) (2.0*07)4

t 2.95 2 m2.95 x 102.
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Appendix B

Vibrational Deactivation of Oxygen Ions in Low Velocity 0 +(X 311 ,v-1)Ig
+ 02 (X-- 9 , v-0) Collisions, with T. F. Moran, K. J. McCann, M. Cobb

and R. F. Borkman, j. Chem. Phys. 74, 2325-2330 (1981).
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Vibrational deactivation of oxygen ions in low velocity
02(X 2Hg,v = 1)+0 2(X 3 9,v =0) collisions

T. F. Moran, K. J. McCann, M. Cobb, R. F. Borkman, and M. R. Flannery

School of Chemistry and School of Physics. Georgia Institute of Technology, Atlanta. Georgia 30332
lReceived 8 August 1980; accepted 7 November 1980)

The deactivation of 0 (X '11, v = I) ions in collisions with 0,(X 'Z, = 0) molecules has been examined
using multistate impact parameter eikonal and orbital treatments. Cross sections for the formation of various
product states in the charge exchange and direct scattering channels have been computed for ions with 0.5 to
8.0 eV c.m. kinetic energies. The relative probabilities for forming products in given vibrational states at the
higher kinetic energies are similar for the eikonal and orbital approaches. At energies below several eV it is

-l necessary to employ the multistate orbital treatment which takes explicit account of the strong ion-molecule
* , scattering. Cross sections for reaction channels leading to de-excitation and/or excitation of the product

O,(X '11,,v = 1) ions have been computed for both charge exchange and direct scattering processes. The
channels leading to vibrationally deactivated O2(X 211, v = 0) product ions are strongly favored at low
velocities over the excitation processes in the charge exchange as well as in the direct scattering channels.

INTRODUCTION action due to vibrational deactivation of 0 (X 2[l, u 1)

As more information is assembled on the reactions of ions by charge exchange processes which result in the

ions with neutral molecules, it is becoming evident that formation of the much less reactive 0(X 211. u = 0) ions.

reaction rate constants for many processes depend
strongly on the internal energy of the reactants.' The Previous theoretical investigations have examined
magnitude of the cross sections for charge transfer re- charge transfer reactions in the symmetric 0*-02 sys-
actions of atomic ions with neutral molecules varies tem and have shown that vibrational excitation of the
widely2' 3 depending on whether the reactant ions occupy products occurs with high probability for ions in the keV
the ground or excited electronic state. Likewise, cross range. 9t Vibrational excitation processes are efficient
sections for collision induced dissociation of various in both the direct as well as the exchange channels due
molecular Ions depend4'5 on the vibrational and/or elec- to strong coupling between these energy degenerate
tronic state distributions of the ions. The influence of channels, t0, tt Differential and integral charge transfer
the neutral target molecule vibrational state has been and direct scattering cross sections in the hundred eV

examined 6,T in reactions of 0 and Ne ° ions with range are adequately represented by the multistate
N2(X t"-; u). The investigation by Albritton et al.t,8 has eikonal treatment, but there is a lack of detailed infor-
shown that the rearrangement reaction of O(X 2H,, U) mation on these processes for the oxygen system at low
with CH 4 producing CH 302 and CH3 is strongly dependent (eV range) kinetic energies. The purpose of this inves-
on the 0;(X 2ri,, U) vibrational state. This drift tube ex- tigation is to examine 0*(X 21e, U = 1) + 02(X 31;;, U = 0)
periment t" has clearly demonstrated that a small collisions in an effort to understand the competition be-

k amount of 0 2(X 3Z;, V = 0) gas, added to the Ar buffer gas, tween the various ionic excitation and de-excitation
effectively quenches the hydrocarbon rearrangement re- channels as a function of reactant ion kinetic energy.

RESULTS AND DISCUSSION

The multistate impact-parameter treatment has been used to examine vibrational transitions occurring in the
symmetric ion-molecule system

o(X 2n ,uo= 1) +0o2(X 32;;, U0 = 0 o 0- 2(X t -stU ")+ ;X 21f0 ,(a

02.o(X 2n, U) + 0oX 'L;, U") (1b)

where charge transfer reactions predominate. In Reaction (la), the incident molecular 0*(X 2r1,, u0 = 1) ions initially
in level v0 capture an electron to form fast neutral 0 2(X E, u ") molecules in vibrational level u ", while in the di-
rect channel (ib) incident molecular ions are scattered with the fast product ions in level u'. Each of the charge
transfer channels (la) is degenerate in energy with a corresponding direct channel (1b) which leads to strong cou-
piing between the charge transfer and direct processes in this symmetric ion-molecule system. Application of the
multistate treatment to these reactions is made in the following sections.

Multichannel eikonal trotmont *(r, R) = S SC:(p, Z)*,(r) ex(- (iE t), (2)

• The wave function which represents the time-depen-
dent response of the internal motions of the system un- where t.(r) are a complete set of molecular eigenfunc-
der the influence of the mutual interaction V(R, r) is de- tions (with electronic, vibrational, and rotational parts)
scribed by describing the unperturbed Hamiltonian W0 for the iso-
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2326 Moran et al.: Vibrational deactivation of oxygen ions

lated system at infinite center-of-mass separation R O,3
with eigenenergies E. The index a denotes whether the 1.0 1 -qW
labeled quantities refer to direct channels D or to charge

* exchange channels X. The quantity r denotes the collec- >- 0
tion of internal coordinates on each center. Substitution ,--

of the wave function (2) into the time-dependent Schr6- -
dinger equation results 2 in the following set of coupled < 05 II

equations for the transition amplitudes C:(t): 0
iacf(p, t)/8t=SV(R)Pf,,C (p, t) exp(i.(,,t), . -_

f= 1, N (3) X CHANNELS

* which are solved numerically subject to the boundary 0 2 3 4 5 6 7 8 9 10
condition that the direct channel i is initially populated,
i.e., CD(p, 6.),=6, CX(p, - )=0. Matrix elements DISTANCE (o.u.)
Pf, are equal to F(u;, u,,)F(u', u;'), where F(ui, u') is FIG. 1. Relative probabilities (eikonal method) for formation
the vibrational overlap for the 02(X 211,, u = 1)- 0 2(X 'Ego of specific product channels in 8.0 eV c. m. O (X nlR, u= L)
u") transition. When a denotes X in Eq. (3), • refers +v 2 (X 3 , u '=0) charge exchanging collisions as a function

to D and vice versa. Differences elf in the internal (f impact parameter distance in atomic units. The numbers
associated with each area denote the vibrational quantum num-energies between initial and final states of the system bers of the respective O (X 2ns, v' and 02 (X 3E, U") reaction

are given by E" - E . The equation used to compute the products.
scattering amplitude in the c. m. frame is

2v (U~l f

.X e x p ( i i 1 f/ tv i)( C f (p , Z )/ Z )d R , (4 )2 tf f p8 , I d .( 9

f~e ~ { i~ePUK R+m~4)]Q(u)= f" o,(, )d -o6 fpp 9

where the incident velocity is vi =--k1 /, the momentum 0
change K during the collision is k, -k with the final mo- The interaction matrix elements V(R) necessary to
mentum vector kf directed along (9, 4), and mif is the describe Reactions (1) are those used previously" for
change in azimuthal quantum number which is taken to be dsib eans (1) are toseued pu sly for
zero for the reactions under investigation here. The this system and they are considered sufficiently accu-

ion-molecule separation vector R has spherical compo- curate vibrational overlaps for the respective transi-

nents (p, 4o,Z), where p is the impact parameter. For tions have been obtained from previously published"
high energy collisions, a straight line trajectory is

with wave functions which were constructed using RKR tech-adequate wniques. 1 For the reactions of 0 (X 21,C, u = 1) ions with
R(t)=p+vlt, (5) O2(X 3Z;, u = 0) molecules, the dominant product channels

are those with small energy defects and favorable vibra-where the velocity is taken to be along the Z axis and is tional overlaps. Product channels with small energy de-
perpendicular to the impact parameter. In this situa- fects are 1, 0; 0, 1; 0, 0; 0, 2; 1, 1; 2, 0; 0, 3 (the vibra-

* tion the solution of Eq. (4) is simplified by noting that tional level u' of the production is denoted by the first
for heavy-particle collisions the Z component of the ma- number and the vibrational level u of the product neu-

* mentum transfer can be approximated by tral as the second number in the pair).

K, =k1 -kfcosO=k, -k1  The computation of the cross sections for charge
= (,/,/4Vt)[ I +Ef/2Av2 +... j . (6) transfer and direct scattering processes requires solu-

tion of the coupled differential equations (3). These cou-

Equation (4) can be simplified13 to pled differential equations are solved numerically by the

f*(e, ')=-ki e' Burlisch-Stoer rational extrapolation technique. 15
Transition amplitudes C:(p, -) determined as a function
of p from the multistate coupled equations are used to

× J(K'p)[C,(p, .. 8_]pdp (7) compute the complex transition amplitudes from Eq. (4)

and transition probabilities IC(p, _0) i for the charge
by performing the 4 integration. In Eq. (7), 81, is the exchange and direct scattering channels. It is neces-
Kronecker delta function and J, are Bessel functions of sary to explicitly consider a total of 14 product chan-
integral order A =mit, and K'= (KI -K,)'" Is the mo- nels in order to obtain fully converged cross sections in
mentum transfer perpendicular to the trajectory. From the O;-02 system at 8 eV center-of-mass kinetic energy.
these scattering amplitudes given by Eq. (7), the dif- The competition between the various reaction channels

* ferential cross section is is graphically displayed in Fig. I for the charge ex-

" ._ change channels where the relative transition probabili-
a 1 (0) = 27rt f(9, 0) I2 (8) ties are displayed as a function of impact parameter.

The open area in the bottom portion of this figure rep-
Integrating Eq. (8) over angle yields the integral cross resents the relative probability for the charge transfer
section Qff(v) given by the equation channel forming slow 0*(X 217, v' = 1) ions and fast
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10 10 0,3 2I
0,0 KE=IeV

" -- I-

O'l <m 0.5< 05 I, - Oom
0

\0,2
01 7, D CHANIFI S

"-- 0,2 D CHANNELS 0.0 I I I I I I

0.0 I 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 DISTANCE (a u)

DISTANCE (ou.) FIG. 4. Relative probabilities (eikonal method) for formation
of specific product channels in 1.0 eV c.m. 0 (X 2nl, U,= 1)

FIG. 2. Relative probabilities (eikonal method) for formation + 02 (X 3Z, u' = 0) direct, inelastic scattering collisions as a
of specific product channels in 9. 0 eV c. m. 0 (X 2li1, V 1) function of impact parameter distance in atomic units. The
• " (X :'E, U1' = 0) direct, inelastic scattering collisions as a numbers associated with each area denote the vibrational
function of impact parameter distance in atomic units. The quantum numbers of the respective O (X2

II,, U') and O2 (X3 .,
numbers associated with each area denote the vibrational

quantum numbers of the respective O(X 2yIe, ') and O (X 3i, U") reaction products.
U1") reaction products.

1, 0 direct channel is not displayed but rather only the
02(X 'i;, u =0) molecules at different values of p for 8 direct inelastic channels, which are the topics of this
eV collision energy. The cross-hatched area gives the paper, are given in Fig. 2. At large values of R the
relative probability for producing O (X 2 , u' - 0) 0, 1 channel, corresponding to de-excitation of the ion,

+ 0,(X "Z;. i = 1) products. The designations of the other predominates. As R is reduced, the other inelastic
various areas in this figure refer to product channels in channels become relatively more important.
which the ion and neutral vibrational levels are u' and The influence of lowering reactant ion kinetic energy
u". respectively. For example, at R equal to 3.026 on the relative transition probabilities is illustrated in
a.u., the relative probabilities for the u',u" = 1, 0; Fig. 3. The relative contribution of the resonant 1, 0
0. 1; 0, 0: 0, 2; 1, 1; 2, 0; and 0, 3 channels are 0.5963, exchange channel is larger at 1 eV than at 8 eV, i.e.,
0. 0303. 0. 0047, 0. 1249, 0. 1534, 0.0868, and 0.0036, the inelastic processes generally become less important
respectively. At large values of internuclear distance as the ion kinetic energy is lowered. At an impact pa-
the resonant charge transfer channel predominates; rameter of 1.0 a.u. the different regions in Fig. 3,
however, at smaller values of p the inelastic charge from top to bottom, represent the 0, 3; 2, 0; 1, 1; 0, 0;
transfer channels become important. Similar transi- 0, 1; and 1, 0 channels, respectively. It is to be noted
tion probabilities for the direct channels are displayed that the area corresponding to the 0, 1 channel (vibra-
in Fig. 2. The notation in Fig. 2 is the same as in Fig. tional de-excitation of the ion) is the dominant inelastic
1, where U' and u" symbols denote the product ion and process at 1 eV. A similar situation occurs in the di-
neutral vibrational levels, respectively. The elastic rect inelastic scattering channels shown in Fig. 4 with

the 0, 1 de-excitation channel playing a more important

2,0 role at lower ion kinetic energies.
0 The relative contributions of the different reaction

KE- IeV channels to the integral multistate charge transfer cross
>_ sections are illustrated in Fig. 5. Integral cross sec-

tions for individual inelastic channels have been obtained
.05 . from Eq. (9) for a range of kinetic energies. Cross
oD 0,1 0 sections for channels having large energy defects tend
0
0: - to increase with ion kinetic energy, a fact consistent

-with the transition probabilities presented in the pre-
X CHANNELS vious figures. Integral cross sections for the direct

00 1 channels are presented in Fig. 6 for the same kinetic
I 2 3 4 5 6 7 8 9 10 energy range. The magnitudes of the direct'inelastic

DISTANCE (au.) channels approximate those for the vibrationally inelas-
tic charge transfer reactions. The direct channels with

FIG. 3. Relative probabilities (eikonal method) for formation larger inelasticities begin to become important above
of specific product channels in 1.0 eV c.m. O4(X 211, U= 1) several eV c.m. kinetic energy. Computation of accu-
-o Ix aj, r-' 0) charge exchanging collisions as a function
of impact parameter distance in atomic units. The numbers rate Inelastic cross sections must take into account the
associated with each area denote the vibrational quantum num- curved trajectories as the reactant partners approach
bers of the respective O; (X 21"1, V') and 02 (X 3;, u") reaction one another. The relative velocity range where the
products. curved trajectories start to influence the inelastic pro-
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3.0 -0

0.1 10 all K E 8eV
t- 0,2

-O

n 2.0 < 0.5
o W

w0
X CAX CHANNELS

Uo 0,2 0 I . I I LI
0* .,I I 2 3 4 5 6 7 8 9 10
04- Q' -0 DISTANCE (a u)00

FIG. 7. Relative probabilities (orbital method) for formation
... ~ o,3 k of specific product channels in 8. 0 eV c. m. ; (x 7v, u= I)

0.0 r- I I I t -+ 02 (3E;, V,' = 0) charge exchanging collisions as a function of
0 I 2 3 4 5 6 7 8 9 impact parameter distance in atomic units. The numbers as-

KINETIC ENERGY (eV) sociated with each area denote the vibrational quantum num-

FIG. 5. Integral elkonal multistate cross sections (A2) for bers of the respective 0 (X 2
1 , u') and 02 (X 3E-, u") reaction

excitation of specific product vibrational states in O (X 2n products.
if0 = 1) q 02 (X 3 ;, te" = 0) charge exchange reactions. Cross
sections for formation of specific ion and neutral product vibra-
tional levels U', u" given as a function of c.m. kinetic energy. the kinetic energy of relative motion. With the use of

the wave function (2), the second term reduces to

cess will depend on the individual system and is ex- (*(r, t) 1C I*(r, t))r =S[ I a. 12f . + S a:aVt,(R) e"t-n
amined in the following section. M h

=V(R(t)) I l1

Multichannel orbital treatment
which represents the averaged internal energy of the

The multistate orbital description of charge transfer collision system. This term couples the response [Eq.
uses Hamilton's equations to determine the actual rela- (2)] of the collision partners to the relative motion via
tive trajectory R(t) and the classical relative motion is the expansion coefficients a,(I), analogous to C.(t), in
evaluated using the "averaged" Hamiltonian Eq. (2) and Hamilton's equations become

qP(t) + (*(r, t) 13CJ I(r, t)), (10) Oq6  pj(t)
- 2p (12)

where the first term on the right-hand side represents and

4.0 , L S S a:(t)a.(t) aV JR(t)) eP,,f1 (13)at M k 'q

a set of six equations, in general, or four for scatter-
D CHANNELS ing in a plane, which must be solved simultaneously with

3 -3 .0 a coupled set (3). In order to relate the flux that flowsF- through the incident area pdpdo to the scattering solid
z F- angle da, dp is given by
o
.- I-dp = (d/tM)=,dn, (14)
U2.0 0.1 where (do/d )o, is the classical differential cross sec-

) - - tion for scattering by Eq. (11) and is just the Jacobian
0 of the (p, nl) transformation. The differential scattering

U 1.0 - I,I cross section for the transition from state i to statef0 ,2 .............. .. 0 is computed from the equation
... " ._ .v. . ,(G)= ja (t-ao) I'(d /ld )., , (15)

0.0 I I I ?"i where at* are the solutions of Eqs. (3) and (13), to be
0 1 2 3 4 5 6 7 8 9 differentiated from Ct, the solutions of Eq. (3) with Eq.

KINETIC ENERGY (eV) (5). If, however, more than one dlassical trajectory is
scattered into solid angle 0 (0, d), then proper account

FIG. 6. Integral eikonal multistate cross sections (A2) for of Intereence must be taken, including the phase of the

excitation of specific product vibrational states in 0 (X 211,, c

% = 1) + 02 (X 'E;, u6' = 0) direct, inelastic scattering reactions. contributing probability amplitude a*. A full account of

Cross sections for formation of specific ion and neutral product the procedure used here has already been given else-
vibrational levels V', u" are given as a function of o.m. kinetic where 6 In the full semiclassical treatment. The Bur-
energy. lish-Stoer method was used to evaluate the af from
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10 3.0 1 1 1 1 I
.. :i > 2,0 0KE.z 8 9V

'' , X CHANNELS

0.5
S,2 o

01a,. Ol-

D CHANNELS Cn
0.0 0 1. 2 I.0(/0. 2 3 4 5 6 7 8 9 10,

P DISTANCE (a.u.) - 0,0

FIG. 8. Relative probabilities (orbital method) for formation X ,,,','. -. 0,2
of specific product channels in 8.0 eV c. m. O(X 2F1, VO= 1) 0.0 -

,0 (X; , u1' = 0) direct, inelastic scattering collisions as a 0 1 2 3 4 5 6 7 8 9
* function of impact parameter distance in atomic units. The

numbers associated with each area denote the vibrational KINETIC ENERGY (eV)
quantum numbers of the respective O (X 2U#, t,') and 02 (A s, FIG. 10. Integral orbital multistate cross section (A2) for
U") reaction products. excitation of specific product vibrational states in 0;(X 2fl,

u,= 1) + 02 (x 3 r, UV'= 0) charge exchange reactions. Cross
sections for formation of specific ion and neutral product vi-

' which integral cross sections have been obtained using brational levels V', u" are given as a function of c. m. kinetic
. the relation energy.

21r (p t 20o 16 2

f 2r f a7(P' t=06) 2pdp" (16) close to the corresponding eikonal value of 33.6 A2.
2 for the Relative transition probabilities for the 8 eV direct scat-

Relative trhasition probabilities (p, for the tering channels in the orbital treatment are shown in
charge exchange channels are shown in Fig. 7 for the Fig. 8. The overall behavior of these orbital probabili-
reactions of 8 eV 0(X 2i,, u = 1) ions. The general fea- ties for the D channels is similar to that for the elkonal
tures displayed in this figure are very similar to the
multistate eikonal probabilities given in Fig. 1. This approach (Fig. 2) but with some structural differences

. similarity is also reflected in the cross sections where between the two at small values of R.
* the total multistate orbital charge transfer cross sec- The differences between the transition probabilities

tion. summed over all X channels, is 31.8 Al2, which is in the two computational approaches are further em-

phasized In Fig. 9, where relative orbital transition
probabilities at 1 eV are given for both the D and X

.0 1,1 channels. There is very little structure in the 1 eV or-
0,2 bital transition probabilities for the inelastic scattering

K.E. leV

0, 3.0 i I I
0,5 1,1 0,2 D CHANNELS

>- 1.0
D CHANNELS

. q, 2K.E.= I eV
2.0 "

0

0.5 _ _
j 1,0

I-, 1.0
X CHANNELS ..... ..

.,, O 0 r .4 I l I 0,2,,

1 2 3 4 5 6 7 8 9 10 "0,0

DISTANCE (ou.) 0.0
0 1 2 3 4 5 6 7 8 9FIG. 9. Relative probabilities (orbital method) for formation KINETIC ENERGY ()

of specific product channels in 1. 0 eV c. m. 0 (X 2l, ,= 1)
0' (. I:;, -1'= 0) direct, inelastic scattering collisions (D FIG. 11. Integral orbital multistate cross sections (A') for

channels) and charge exchanging collisions (X channels) as a excitation of specific product vibrational states in 0 (X 2fl,.
function of impact parameter distance in atomic units. The t = 1) + O (X3 E;, U,11=0) direct, Inelastic scattering reactions.
numbers associated with each area denote the vibrational Cross sections for formation of specific ion and neutral product
quantum numbers of the respective 0#(X 2rl, V') and C2 (X sr;, vibrational levels t, u" are given as a function of c. m. kinetic
V") reaction products. energy.
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.1 T00F T r---T ,T 1 the fast reactant ion ends up as a vibrationally deacti-
vated product ion.

The resonant charge transfer channel involving re-
actant 0;(X 211, u0 = 1) ions has the largest cross section

I$ of any other channel. The ratio of the cross sections for

O0V resonant to inelastic channels increases as the reactant
ion kinetic energy is lowered. The inelastic processes
dominant at low ion kinetic energies are those that lead
to vibrational de-excitation of the incident u0 = 1 ion

C5 beam. Quantitative measure of the vibrational de-exci-
tatlon of the ions is given in Fig. 12, where the cross

0 - section ratio (sum of all X and D channels with product
ion u' = 0)/(sum of the two largest X and D excitation

I "\ channels) is presented. At low kinetic energies, the
- collisions that lead to vibrational de-excitation of the

incident ion beam are approximately 200 times more
* "--- probable than the vibrationally inelastic collisions.

I J 1 l I ' 1 .- -' 'i Thus, low velocity 2(XH,, uo=1)-O(X !,uo=0) col-
o I 2 3 4 5 6 7 8 9lisions provide an effective means for quenching vibra-

KINETIC ENERGY (eV) tional excitation in the incident ions.

FIG. 12. Ratios of de-excitation (0, EU) to excitation [(1, 1)
* (2, )) cross sections for 0;(X 2rl,. U1,= 1) ions as a function ACKNOWLEDGMENT
of c. m. kinetic energy in O(X 2 , U = 1) + 02 (X

1 Z, V''= 0)
collisions. The dashed curve illustrates the ratio for the One of us, MRF, acknowledges support by AFOSR
charge transfer channels X; the dot-dashed curve gives the under grant AFOSR-80-0055.
ratio for the direct scattering channels D; the solid curve il-
lustrates the ratio summed over the X and D channels. Cal-
culations were performed using the orbital method. 1D. L. Albritton, in Kinetics of Ion-Molecule Reactions, edited

by P. Ausloos (Plenum, New York, 1979), p. 119.
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-We present a basic theory of the link between the low and high gas-density limits to ion-ion recombination under a gen-
eral interaction V which now depends on the ion density and which is determined self-consistently with the recombination.
Increase in ion density up to 1014 cm-3 causes little change to the recombination rates in direct contrast to that obtained in
recent computer simulations.

Not only is the ion-ion recombination process * cm- 3 . The time-dependent continuity equation is

X+ +y+ Z - [XY] + Z (1) an-(R,t)t - VR

of basic theoretical significance 11] in its own right, C
but it plays a key role in populating 121 the upper =- [an(R,E , t)/atIS, (2a)
molecular electronic states of inert gas-halide lasers i=-V(R)
which operate not only at high densities N (A4-10
atm) of the background gas Z but also at moderately where the net inward current (number of ions/s across
high densities N* - 1012-1014 cm- 3 of the positive unit area of an R sphere)
and negative ions X+ and Y. Reliable laboratory ex- D[Vn(R, t) + n-(R, t) V (VkT)]
periments are difficult and are as yet not forthcoming.

All previous [3] theoretical treatments and experiments = -D e- V/k T [d(n-e V/lkT)IdR ]R (2b)
pertain tacitly to dilute ionization for which a coulomb-
ic ion-ion interaction is correct. arises from diffusional drift of the ions with relative

The purpose of this letter is to briefly outline a basic diffusion coefficient D in the gas Z under an external
theory of the recombination rate a (cm3 s- I ) of (1) field of potential V(R). The collisional-sink term is
versus gas and ion densities, N and Na, respectively and [n(R,Ei , t)/at] S
then to illustrate the key effects by appeal to a model
version. In so doing, we will raise an interesting issue -M(R)
on the validity at all N of the ab initio adoption [4] of N 1 n-(R Eft)kf1(R) (3)
the Debye-Huckel interaction as a means of incorpo- f=-V(R) ,If,

* rating plasma sheathing effects when N* is raised. Bates
[5] has recently argued that this procedure is invalid at in terms of the phase-space densities n7(R,Ei, t) of
high N. Ri-ion pairs (i.e. ion pairs with internal energy Ei and

- Recombination rate a. Let the negative ions of den- fixed internal separation R) and of the collisional fre-
sity n-(R. t) at time t stream across spheres of radius quenciesNkfi at which Ri-ion pairs are converted into
R each centered at each positive ion distributed N* Rfion pairs by collision with the gas bodies Z of den-

sity N (i.e. for Ei -* Ef collisional transitions). The col-
The square brackets denote that the product may not remain lisional sink is effective only when the lowest bound
bound, level - V appropriate to fixed separation R lies at or
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below the level -S of energy E-S below which the re- is therefore constant for R > RE. The ihs of (4) times
S. combination is assumed to be stabilized against any up- exp(-At) then evolves with R to the complete time

ward collisional transitions, i.e. -M is max[-V, -S]. derivative of N* with the result that the recombination
- Although expression (2a) has been derived [I I from coefficient appropriate to asymptotic ion density N

the full Boltzmann equation which describes the evolu- is
tion of the phase-space densities n7(R,E 1 , t) by gas col-
lisions, it can be written down immediately from mac- 3 (RE) n (7)

roscopic principles. The microscopic origin of the mac- which is determined by the rhs of (5) evaluated at RE.
roscopic current / of (2b) is the balance of all ineffec- Note from (7) that a3 exp(- V/kT) is the recombina-
tive ion-neutral collisions in the absence of the sink, tion rate aRCTN that would pertain provided a Boltz-
collisions which, in the presence of the sink, oversub- mann distribution (N- e- V/kT) of ions were maintained,
scribe / by the amount (3) summed over all states i in i.e. a reaction rate. Although a in principle, is deter-
(2a) between the lowest level -V and the far continuum mined in (5) by energy-change rates kif and phase-
C. In a shell of radiusR and thickness dR centered at space densities n7(R,Ei) of Ri-ion pairs, which, in turn,
each positive ion, distributed N+ cm- 3, the number are solutions of a certain Boltzmann equation [I 1, a Idensity N*dR of ion pairs is 41rR 2 dR N+n-(R) which powerful approach based on prior or alternative knowl-
are assumed to decay explicitly with time as e- A t so edge of the "reaction rate" aRCTN is as follows.
that (2) becomes Neglect in (4) of the first term, which depends on

CR n-(R) within RE, implies,

AN+ f 41rR2 n-(R)dR RE[::o f 4rR 2n-(R) dR -< I,(8)

1 0
+dR d n(R) since A -ocN-, such that N-4 (rR3) and few ions

are present in the recombination volume as measured
by RE .Then, integration of (4) under constant flux

a3(R) n-(R)N +, (4) (47iR 2jN+) given by Fc of (6) yields,
' where the sink term (3) on integration over the volume n-(R) =N-e-VkT[l - (afC1CRNs)P(R)P(RE)

* of the RE sphere has been replaced by

a3 (R) n-(R W + N-e-V/TaTRNS(R)

K~ -E aRCN(R)-+..I.RNS(R) 'R 9
0 =NJ dN-*(R,E) kR) where the dimensionless quantity

- ,Ef kfi(R j . (5) P(R)=Ref R2eV/lcdR, R=e 2 /kT 

f fi-M Re

the net balance between the rates of downflow and in terms of the natural unit R e of length, and where
upflow of R-ion pairs past an arbitrary level -E of neg-
ative energy. Although this replacement can be rigorous- CfTRNS(RE) = 4AEKe/P(RE) -- /P(RE) (1
ly justified ( I it is physically correct and obvious, tends at high N to the correct Langevin-Harper rate

Under thermodynamic equilibrium when the sink is [3,6] a1H for ions with relative mobility K in gas. Hence
neglected, the rhs of (5) vanishes. Since no effective col- (7) yields

* lisional transitions occur at R > RE, the outermost
turning point associated with -E, the flux in the rhs = aRCNT(RE)aTRNS(RF)
of (4),

[0IRCT (RE) + 1TRNS (RE)] -i (12)
Fc(R)=a3 (R)n-(R)V =aN+N- , R)RE, (6)
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t in terms ofO H which is known, and which -N -1, and The [ I term, which depends on V,N andR inof the reaction rate aRC-TN and V, yet to be determined. (14), tends to unity at lowN for all R and increases at
At low densities N, 0/aTRNS - 0 as N 2 such that high N, from zero at R - RE to unity as R - o. Asthe ion density (9) is Boltzmann and GRCTN may be Rs , i.e. no plasma ,;heathing, the solution is coulomb-

uniquely identified with the low density limit to a. At ic so that an iterati,,e solution valid for low N! (large
low 'i, the reactivity of the ion pairs via three-body col- RS) and high N in the vicinity of RE is
lisins with the gas is slow in comparison with the rate 2
ot ionic transport. so that this rate limiting step is char- VH (R)IkT = -Re R/Rs)exp(-Re/RE),
acterized by RCN• At high N, a/TRNS - I such that
n-(R) in (9) departs appreciably from Boltzmann for RE R <RS ( 6)
R - Rp-. As N is increased the reactivity of the ion which is pure coulombic for R <Re, or for R 3 <
pairs via three-body collisions becomes so great com- 12R R 2 i e when NI : 1014 cm- 3 at R R Forpared with the rates of ionic transport that continued low N. oth *exponential terms in the rhs of (14) are
reaction at R z RE causes significant depletion in important. When R - then V < kT such that then-(R) over a localized iegion that n-(R) is far from solution to (14) can be obtained for all N linearizing
Boltz mann. Hence the recombination process can be the exponentials to give
viewed as proceeding via ionic transport at rate OtTRNS vDH(R) -+ -(e 2/R) exp(-R/Rs), R -, (17)
followed by three-body reaction at rate aRCTN such VL
that the overall rate (12) is controlled by the rate lim- the Debye-Hfickel interaction which can be used as a
iting step. starting condition for the inward integration of (14) from

The above theory establishes a firm theoretical foun- large R.
dation for (12) which, as noted previously by Bates Thus, the present method involves self-consistent
and Flannery 161 is intrinsic to the expression of solutions of a and V via (12) and (14). If an analytic

7 Natanson [71 and which is based on the equality of the form of the reaction rate aIRCTN which also depends
transport and reaction fluxes, on Vis also unknown, then (14) is coupled to (5) in

Interaction V. As N' is raised, the ion-ion interac- terms of the energy-change rates kip and of the phase-
tion V can no longer be assumed ab initio to be purely space densities n7(R,Ei), which are solutions of a cer-
coulombic but is given by appropriate solution of tain Boltzmann equation [1] which also includes V.
Poisson's equation Reaction-rate model. Rather than solve directly forV2 V(R) = (41re2/e) [n+(R) -- n-(R)], (13) ni(R,E) and hence for a from (5), assume that the sinkterm in (2a) can be replaced by a partially absorbing
when the local positive and negative ion densities are sphere of radius RE such that (2a) is, in effect,
n-(R) and where e is the dielectric constant of the gas
Z. In the reference frame of the positive ion, n+(R) is an-(R,t) I a(R 2j)
the Boltzmann distribution N+eV/kT such that (13) ra. R - - r 3 n-(R)6(R - RE), (18)
for an R-symmetric distribution reduces with the aid of

() to, where r3 is the speed of reaction (via three-body co-

lisions) for ions after being brought to RE by ionic
a -(R 2 

'. R (2R2)- {e"kTr transport. In steady state, (18) incorporates the bound-

/ R 21_ ary condition,
- [1 - (aTRNS)P(R)/P(RE)I e-V/kT}, (RE) = r3 n-(RE), (19)

which when multiplied by 47RE is equivalent to (7)
R > RE, (14) such that

where the "screening" distance is a3 (RE) = 4rR2 r3 , (20)
RS = (8irNR /e)- 112 . (15) thereby confirming that the strength F 3 of the sink in

(18) is the speed of reaction within RE. The solutions
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(9) and (12) follow directly from (18). For F 3 large R i + Wi and R i.The minimum of R1 and R 2 is R S such

compared with the speed of ionic transport, as at high that W(Y1 ) W(Y ) with Yi 
= Rs/Xi is the probability

N. the reactivity of the sink is effectively instantaneous of simultaneous ion -neutral collisions within Rs, a

. and a tends to CtTRNS the transport rate, while low N probability counted twice in the first two terms of

" implies P 3 small compared to the transport speed so (21 a). Simple geometric arguments show that G in (21a)

* that a tends to the reaction rate atRCTN. It is worth is either CIE 1 or C2E2 depending on whether RS is

pointing out that when (18), with its rhs set to zero, is R 1 or R 2 , respectively.

solved subject to the boundary condition n(RE) = 0, The trapping radii R i may now be deduced from

then the expression of Bates (81 is recovered, i.e. a is kinematical considerations. The initial kinetic energy

given entirely by QTRNS. From (19) this zero-density of relative motion of the positive ion I and negative

boundary condition is equivalent to assigning an infini- ion 2 is

V tely fast reaction speed F3 to the sink, as is the case at

high N. Thus (19), effectively allows for a finite reac- To  (aV/aR)dR. (22)

tion rate associated with a partially absorbing sink, f
rather than a fully absorbing sink implied by zero

n-(RE), equates the transport current at the boundary since the ions on average are uninterrupted by collision

with the current of absorbed ions, and is valid for all only for separations between R + X and R. Ion pairs

N. upon collision with a neutral become incapable of ex-

On recalling that each species of ion i have different panding outwards from R to R + X provided their final

mean free paths Xi in the gas Z and different sink radii kinetic energy Tf is barely sufficient to provide the
Ri, the model for the rate okRCTN of reaction within necessary energy required to increase R to R + X against
RE is therefore generalized from (20) to give the attractive force, i.e. when

aRCTN(RI,R 2)= R W(XI)CE +R2 W(X2 )C2E 2  R (aVR)dR. (23)

LI -R1w(rI) W(Y2)G (t12), (21a) R

where (v12) is some averaged ion-ion transport speed Introduce a collision parameter 6 to be fixed later

of approach, and where the probability for an ion i- such that the energy change To - 7). is 6Tf. Thus the

neutral Z collision for ion pairs with internal separation criteria (23) with (22) yields
R ! R i increases with gas density to unity as [91 V(RE + X) - V(RE) = 3kT/6,

1W(XI) = 1 - (I/2X1)[ - exp(-ZXi)(l + 2X,)], to be solved for the trapping radii REt corresponding
to mean free paths Xi where the subscript i is attached
to quantities associated with each species of ion. In this

for a straight-line trajectory. The factor strong-collision model, the interaction need only be

Ei = exp[- V(Ri + Xi)/kT] (21c) specified at the trapping radii REi. Solution of (24) for
pure Coulomb field is

acknowledges the Boltzmann enhancement in the ion- R i I Xi [(I + 4i i 1/2

number density due to the field at R i + Xi at which the iRT/' I

last ineffective ion-neutral collision occurs just before - R as N - 0,
the ion enters the recombination sink within R i.The T

factor -4 (6iRT)" / 2  as A' , ,, (25)

R+ =+ f Vwhich decrease monotonically with Xi and which satisfy

= I + (2/3kT) f (OV/3R) dR (21d) Ri(Ri + ?i) = 6iXiRT. where the Thomson trapping ra-

dius RT is 2e213kT.

acknowledges the focusing effect of the interaction on At low N, X, and (24) sets VL(RE)IkTequal to

the assumed straight-line ion-ion trajectory between -3/26 to be used directly in the rhs of Poisson's equa-
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tion (14) which can now be solved to yield 10-5

ION DENSITY N (cm
- 3)

: (a)- 108. bM 10 13, (c) 1014

VL(RE)IkT -Re/RE + -(RE/Rs) 2 B(b5), (26a)
where

B(b) = exp(3/26) - exp(-3/26). (26b) -

This potential which reduces to pure coulombic for 2
R R e and N* 1014 cm-3 is almost identical to (16) 3
appropriate to high N. At low N, the trapping radii in
(24) are therefore solutions of

B(6,'l8R2)R3o + R =6R (27) -7I
S o EO T (27)0 11 0

and, for all N are given in terms of this solution REO by GAS DENSITY N (IN NL-UNITS)

RE= ?[R1 + 4REo1) 1 2 
- 1] Fig. 1. Recombination rate coefficient a (cm3 0- ) at 300 K

for (Kr -F-) in Ar, as a function of gas density N (in units of
- REO, N - 0, Loschmidt's number density NL = 2.69 X 1019 at STP). -:

present treatment with mobilities K, = 2.16 cm 2 /V and K 2

(REoA)11 2, N - (28) 3.29 cm2
/V s, for various ion densities N' as indicated; X:

EO 'universal Monte Carlo (hard-sphere) plot 1121 ; o,, : Monte
in analogy with (25). Finally the low-density N limit Carlo (polarization) results [41 at N! 10 and 1014 cm- 3,
to (2 Ia) is respectively.

aTRNS ' OiL = aLl + OL2 = Cl 6 ItTI + C 2 2 T2 ' for low Nt are also shown together with the direct

(29a) Monte Carlo computer simulations of Morgan et al. [4]
Kwho adopted ab initio the Debye-Wickel interaction

where Ci is I + 6bi1 , and (17) for higher Nt. The general agreement between
SrR3  the various methods at low N: can be considered ex-

Tl 3  T 2 b cellent, but significant departure occurs at higher N-t

is the Thomson partial recombination coefficient as 1 1014 cm- 3 . The origin of the discrepancy at high N
N- 0. The ratio 9'Ti of the exact low gas-density is due to the factor P(R) in (I I ), %t; -h is mur-l 'I..ger
limit as given by the effectively exact microscopic for the Debye-Hiickel intera.,,;- ,. 7) than Ltr the
theory of Bates and Flannery I101 to (29b) has been interaction (16) predicted here, and, at low N, to the
provided [ 11 ] over an extensive range of systems such trapping radii given by (24) which for (17) are much
that the collision parameter 5i introduced above can smaller than those for (26) predicted here. The Debye-
now be uniquely obtained from solution of Hiuckel interaction (17) contains much stronger repul-
6+62 R = 0 (3 sion than either of (16) or (26). The theory outlined
IT (30) here predicts little departure of rates a up to Nt-  1014

and taRCTN tends, therefore, at low N to the exact cm- 3 . The theory indicates via (14) that the Debye-

quasi-equilibrium value (101. Hilckel interaction is only valid at asymptotic R of
Results of the present procedure, represented by little significance to the recombination. At high N, the

(12) with aRCTN given by (21) in terms of trapping ion distribution at RE is far from Boltzmann equilib-
radii (28), for the rate of rilim, and V> kT such that linearization of even an
Kr+ + F- + Ar - KrF* + Ar (31) equilibrium distribution is not valid at these R of sig-nificance to recombination.

at 300 K are illustrated in fig. I as a function of gas In summary, therefore, we have provided here a
density N for various ion densities Nt up to -1014 cm-3- timely theory of a as a function of gas and ion densi-
the validity limit of the present analysis. Results from ties, have shown how the overall recombination may
the universal Monte Carlo plot procedure of Bates 1 121 be viewed as proceeding via ion transport followed by
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Exact Closed-Form Solution of the Generalized Debye-Smoluchowski Equation
M. R, Flannery

School of Physics. Georgia Institute of Technology. Atlanta, Georgia 30332
(Received 9 April 1981)

The first exact solution of the time-dependent Debye-Smoluchowski equation for dif-
fusional drift under a general interaction in the presence of a reactive sink is presented.
Associated time-dependent rates of chemical reactions in a dense gas are formulated
and display the basic physical transition from reaction control to transport control as
time progresses for a system initially in Boltzmann equilibrium.

PACS numbers: 34.10.+x. 51.10.+y, 82.30.-b, 87.15.-v

The number density n-(R, t) at time t of some by the net inward diffusional-drift current,
species A (e.g., negative ions) drifting under -V\a IV\

interaction V(R) across a sphere of radius R j(R, 0) = DeX P - n(R, t) exp( ) (2)
towards a central species B (positive ion) in a
gas Z (or liquid) under the action of a reactive in te te diffusion offiin t (m s.
spherical sink of extent S from B is governed by for relative diffusion of A and B in Z.The number density N, of all ion pairs AB with
the generalized Debye-Smoluchowski equation, internal separation R - S then decays at a rate,

dn (R,0 n (R, t +R 2  -!-R2j(Rt )d " d 4 R 2
dt at DR ----dl., 2 Nn-R,t)dR

r3n(R,t)R-s). (1) - aN, +N [F _4nSj(S_ -, t)l

Here 17, is the speed of reaction (via ion-pair- at

gas collisions) for ions after being brought to S =4;S 2 r 3 n-(S, t)N= a()N+N-, (3)
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where F. is the rate (s) of generation of nega- cient (cm 2 -') is
tive ions at infinity, and where a is the time-
dependent rate (cm 3 S-') of recombination approp- =!I-)-. (9)
riate to asymptotic ion densities N'. If the ion R

current approaching S is absorbed by reaction The form of this equation is, in the transformed
within S, then lim, -o ,j(S - 4, t) -0. In steady R representation, identical with that for the field-
state, the rate 41FR 2j(R, t) from (1) is constant free case in the original R representation. Ac-
for R ; S + c and equals the production rate F. cordingly, introduce scaled quantities,
in (3).

Equation (1) automatically incorporates the
boundary condition such that (8) reduces to

r3n-(S, t) = ira j(S+c, t) (4) 80f'(, 0)/at = 82n(, ff)/a.pI2.

f -0

which follows on integration of (1) between S* e This can be now solved by the method of Laplace

and which equates the transported and absorbed transformation which automatically incorporates

currents at the boundary. At asymptotic R the the initial condition. The full solution of (1) a$-

correct solution of (1) tends to the Boltzmann propriate to spontaneous reaction 17s - - in (4)]

distribution. is then, after some analysis,
n'(R - -, 0) = N- exp(- Vlk T ). (5) "( s)(R' 0t)( 9

=N- ex (rc _O7Equation (1) is of basic significance not only to :kT/ 2(D T) dR
ion-ion recombination in gases ' and ionic solu-
tions but also to chemical reactions in a dense (12)
medium, to coagulation of colloids, to medical The associated recombination rate is then
radiology, to diffusion and field controlled reac- CxI 8M(t) =4 S2j(S, t)/N-
tions in metabolizing systems (as enzyme-sub- = -v(s)/kTI
strate reactions in a cell'), and to diffusion + (
across a membrane. While an exact time-depen- TRNSL 5(VDt)MEJ

dent solution to (1) can be obtained2 for the field- which tends at long time I >>S 2/D to the steady-
free (V = 0) case, no exact solution has yet been state transport rate
determined for general V although a large body OfTRNS=4 1SD= 4 vDR,/P(S), (14)
of literature exists on various approximate tech-
niques3 for the Coulomb case. We provide here where the natural unit of length R, is (e 2 kT) and

the first analytical exact solution of (1) for gen- where

eral V(R), subject to the condition that n-(R, t=0) P(S) =R,/=RJs'exp(V/kT)R'2dR. (15)
is prepared as the Boltzmann distribution (5). Under condition of equilibrium with the field, the

The following exact solution is based on the Einstein relation (DR,= Ke) between D and the
novel transformation from R to the variable mobility K is valid. For a Coulombic attraction,

A = I J exp[ V(R)/kT]R "2 dRI -'; the steady-state solution (14) is then

dA/dR = (A/R )2 exp( V/kT), (6) a TRN () = 4 Ke/[1 - exp(-R./S)] (16)

which is not without its physical significance. It in accord with that of Bates. 4

is related' to the probability that an R-ion pair The boundary condition (4) for finite reaction
will further contract by diffusion under V, in under a field is,
the presence of an instantaneous sink at S. Let, r 3(S)X-(s, t)

n ,(R,t0 n (R, 0 exp(V/kT) (7) = e p[ ( ,t x T ( 7
such that (1) with (6) reduces to

which yields, in the transformed representation
an,(i, = b a 2 a(R ] (8) (6),

subject to (4). The transformed diffusion coeffi- ( t) =F(-), (18)
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where the transformed speed of reaction is

f, = T(dfi/dR). (19)

Hence, the full time-dependent solution obtained from Laplace transformation of (11) subject to the
initial Boltzmann distribution is, for a general interaction, given by

n-(R,t)=N exp(-V/kT)[l +(-- ){exp(26 j) expj erfc(Q+f) - erfc 1]. (20a)

Here the associated quantities are defined as
(t =(1+ /b)(Lt)J//S,(20b)

1(t) =(A - g)/2( t)/2, (20c)

and

,6= a3 1 /(a3 + a), (20d)

in terms of the transformed reaction and transport rates,

&3=4nsr, 6D =4-T . (20e)

The ratio of these rates is, however, unchanged and given by

= 41S 2 r exp[-V(S)/kT= aRCTN (21)
1 a TRNS aTRNS

Here aRCTN denotes the reaction rate which from (3) is the recombination rate that would pertain
provided a Boltzmann distribution of ions were maintained as at low gas densities when j in (2) vanish-

g es. The full time-dependent recombination rate is now given by (20a) in (2) as

a(t) =4S2r3 n -(S, t)/N" = a0 -l1 +(ORCTN/a TRNs) expi 2 erfc i J, (22a)

* where d(R = S) in (20c) vanishes, i in (20b) is, with the aid of (6), (9), and (21),

i= (1 + 0 R C TN/a TR N )[(Dt)12/S] exp[V(S)/kT][ S Jexp(V/k T)R-2 dR J-', (22b)

and where

0 - a R C TN GTR NS'" ( R CTN + 0 TR NS) (22c)

is the steady-state rate of recombination which is controlled by the rate limiting step of reaction ver-
sus transport and which exhibits a form' characteristic of physical mechanisms in series. At high gas
densities N, a TR N I << a RC TN such that a- -aTR NS, the transport rate. At low N, a TR N S (Y TN. such
that a--a- CTN. As t increases from zero, then

expX2erfc y-1-2X-X2 -  X3+... (23)

such that

(Dt,'IIo TN-- exp[ V(S)/kT]JSJ exp(v,kT)R dr} (24)
L 0 \TRN!S)

decreases initially from the reaction rate ORCTI As t- ,

exp )?erfc X-X -X2 + T7" (25)

such that the long-time dependence is

1+ ,-.a -a \Sexp[-V(S),kTJ -exp(()kT)R-2 dRJ (26)=C. l I I .)
-(1 ) 1 2 I s J , e p

which tends eventually to the steady-state rate a. for t >>b(S2 1D).
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The ion density (20a) tends to the steady-state limit

Su"-(R, N- eXp(- Vk) 1( ) (27)

which at low N in approximately Boltzmann but departs appreciably from Boltzmann at high N (a o
-aTiNS) particularly in the region of the sink.
The full time dependence in (22a) for a is contained in (22b) for which, for a pure Coulomb attrac-

tion, varies as

j<,r) + ( a + CT )Jxz "2'2EY2[x - ] (28)a-s N SS I S

where the scaled time is I transport is initiated in an attempt to compensate

T = t/(V/D) (29) for the resulting hole in the distribution. For
(S/D), the time approximately re- low NsNL (-1 atm), a linear variation of al)

in te unts ~with t is exibited since the reaction rate CXRCTh

quired for an ion to diffuse from the boundary to
t an sNs is always the rate limiting step. Thus

Int Fig. the tiedpenkthe transition from reaction to transport is best' In Fig. I the time dependence in illustrated for
the recombination rates a(f) resulting from (22) observed for dense gases. Also shown in Fig. 1
t mrare the characteristic time scales (S3/D) for dif-
for various gas densities N (in units of NI, the fusion across a sink of radius S which is corn-
number density 2.69 xlO" cm-' at SIP). The preesible with N. This effect could therefore be
transport rate aTNS is given by (14) and the re- detected by modern laser spectroscopic tech-
action rate GRcTN for a fictitious (but representa- niques based on rotational or vibrational transi-
tive) case of ions of equal mass (16 amu) and tions in molecular ions. The stead-s ras
mobility 2 cm'/V s recombining in an equal ininmlcarts.Tetad-aerts
mass gas at 300 K is obtained from a model are of course independent of the initial condition.

which yields the exact quasiequillbrum rates In summary, we have presented here the first

at low N. exact closed-form analytical solution of the gen-
For h N , aeralized Debye-Smoluchowski equation for diffu-

sional drift in the presence of a reactive sink or

•aCTS, which is >DaTRNS, to its steady-state source. The evolution of the rate of the overall
limit which is 0 TR NS, i.e., for the assumed ini- process for an initial Boltzmann distribution ex-
tial Boltzmann distribution, reaction first occurs hibits the interesting phenomenon of control by

3 spontaneously for the ions within S and then ion reaction to control by transport, and illustrates
the competition between these basic physical

30 mechanisms as time progresses. This phenom-
enon is directly important to many areas as

Ir a 6 tme0 r 23 fluorescence quenching in solutions and in the
I I disappearance rate of ionization tracks.
2 1
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Ion-Ion Recombination in Dilute and Dense
Plasmas

M. R. FLANNERY
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Theory of ion-ion recombination in a gas is provided as a function of gas density N, ion density
*N*, and time. An approximate analytical solution to the generalized time-dependent Debye-

Smoluchowski equation for reaction and diffusional drift under general ion-ion field is provided
for an initial Boltzmann distribution of ions. The transition in the time-dependent rates a(t) of re-
combination from reaction to the rate limiting step of reaction and transport is illustrated for various
N, together with the variation of the steady-state limit a with N. The method and results are of basic
significance for situations ranging from medical radiological and biophysics to the rate of disap-
pearance of ionization tracks.

I. Introduction

In this article we outline the first basic theory [ 1 of the recombination pro-
cess

X++ Y-+Z--. [XY] +Z (l)*

as a function of the density N of the gas Z, of the density N of the ions X + and
*- Y- and of the time t. The problem is fairly complex in that various macroscopic

effects such as diffusion, mobility and the recombination sink must be initially
* " addressed [ I ] in language of their microscopic collisional origin, so that various

effects are not twice included (unwittingly) via some particular graft of mac-
roscopic phenomena and microscopic principles. This detailed history has re-Vcently been established I I I via the Boltzmann equation and in this paper a
simplified version which correctly blends microscopic and macroscopic effects
is provided and the important results are illustrated. The work is significant also
to chemical reactions in dense gases, to recombination in dilute ionic solutions
and to the time rate of disappearance or diffusion of ionization tracks produced
by a high-energy laser or beam of particles.

2. Recombination Rate

Let the negative ions of density n-(R,t) at time t stream across spheres of
radius R each centered at each positive ion distributed N cm- 3. The time-

* - dependent continuity equation is

1,(R,t) - VR Yj W (R,Ei,t) (2)

The square brackets denote that the product may not remain bound.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 15. 715-727 (1981 )
@1981 by John Wiley & Sons, Inc. CCC 0161-3642/81/010715-13$01.30
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where the net inward current (number of ions/s across unit area of an R
sphere)

SIj = D(Vn-(R,t) + n-(Rt)V(V/kT)l
-- D exp(-V/kT)(d/dR)[n- exp(V/kT)]R (3)

arises from diffusional drift of the ions with relative diffusion coefficient D in
the gas Z under an external field of potential V(R). The collisional-sink term
Is

-M(R)

atn7 (REit) = N nj(R,Ef,t)kp(R) (4)JI [t (,I)s f--V(R)

in terms of the phase-space densities n7 (RE,t) of Ri ions (which form ion pairs
with internal energy E and fixed internal separation R) and of the collisional
frequencies Nkfi at which an Ri ion pair is converted into an Rf ion pair by
collision with the gas bodies Z of density N (.e., for E - Ef collisional tran-
sitions). The collisional sink is effective only when the lowest bound level - V
appropriate to fixed separation R lies at or below the level -S of energy E-s
below which the recombination is assumed to be stabilized against any upward
collisional transitions, i.e., -M is max[- V, -S]. Although expression (2) has
been derived [I] from the full Boltzmann equation which describes the evolution
of the phase-space densities n7(R,E,,t) by gas collisions, it can be written im-
mediately from macroscopic principles. The microscopic origin of the macro-
scopic current j of Eq. (3) is the balance of all ineffective ion-neutral collisions
in the absence of the sink-collisions which, in the presence of the sink, over-
subscribe j by the amount in Eq. (3) summed over all states i in Eq. (2) between
the lowest level - V and the far continuum C.

On integrating over the volume of each R sphere,

-N+t a [41rR 2n- (Rt)dRJ + 47rR 2N+j(Rt)

= 3(R)n-(R,t)N +  (5)

where the sink term which effects recombination has been replaced by Il

K a 3(R)n-(R,t)N + = N dR [ {N7(REit) E kif(R)
i--i E f--V

- _. N (R,Eft)kfi(R) (6)
f.f,-M

the net balance between the collisional rates of downflow and upflow of R ion
pairs past some arbitrary bound level -E of negative energy. In the shells of radii
R and thickness dR, the number density of Ri ion pairs (or radial two-particle
correlation function) is

N7(R,E,,t) = (4rR2 dR)N+n-(R,Ej,t) (7)

We note for R - RE, the outermost turning point associated with level -E, that

h* 4
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Eq. (6) tends to a constant since collisions with the gas atoms can be assumed
impulsive [21 and change only the internal energy E, of the ion pair and not their
internal separation R. Hence, the flux F,.(R) due to recombination,

dN 4,

Fc(R,t) = a13(R)n-(R,t)N . . aN+N -. R > RE (8)
dt

is therefore constant for R >_ RE and since the left-hand side of Eq. (5) evolves
to the complete time derivative of the ion density, the overall recombination
coefficient a in Eq. (7) appropriate to asymptotic ion density N- is there-

n fore,

a(t) = a3(RE)n-(RE,t)/N- (9)

which is determined by Eq. (6) from a knowledge of the phase space ion-pair
densities Ni and the collisional rates kif(R) for energy change.

By appeal to the Boltzmann equation for motion of an ion under an external
electric field of intensity E - (-V V), the phase-space densities evolve in phase
space and time as,

(Rvit) + vi [VRn(Rvjt)] + (e ) V,n,7(R'vit)

i l t (10)

where vi is the velocity of the negative ion at time t. Here the explicit time rate
of change (On, /lt) results from the following four mechanisms.

(1) The continuous transport (diffusion) of Ri ions across the R sphere is
due to the R-inhomogeneity in ni.

(2) The continuous drift in velocity space due to E produces an acceleration
(eE/m) in each of the niAR ions initially with velocity points vi within the phase
element Av1AR, i.e., the R ions drift in velocity space at the common rate
(eE/m) and are therefore lost from the initial elementary region.

(3) The quasi-discontinuous change (bn7/at)EL of ions with velocities within
Ayj removes ions upon elastic ion-neutral collisions from one velocity element
Av to another. Replenishment to Av is due to similar displacements from other
elements of velocity space. Hence,

II at " ]EL 0 f jf -v~)o(~01 n(R,vj,,)No(R,vo,)I

fi tg(g4)dQj1 dvo, g = (v/ - vo) (iI)

where No(Rvot) is the phase-space density of neutral gas species, and where
the ion-neutral differential cross section at relative velocity g = (v - vo) for
elastic scattering by angle ' into solid angle dQ is adg?. The (2 integration is over
that scattering region (' made accessible for the production of final ion and
neutral velocities 'f and vo, respectively, consistent with initial fixed vi and Vo.
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Note, however, that these elastic scattering terms produce energy changes (in-
elastic effects) in the internal energy E of an ion-pair system.

(4) The loss of ions [6n7/*tIs due to the recombination sink tends to cause
a redistribution in internal energies E, of an ion pair with fixed internal sepa-

F. ration R.
The elastic term in Eq. (II) produces inelastic transitions (Ei -- Ef) in an

Ri ion pair and on integrating over (I /47r)di an expression equivalent to Eq.
(11) can therefore be written as,

C
= N nf(R,Ef,t)kn(R) - n(R,E,,t) F (12)

f=-V I

where the internal energy E is I/2mv + V(R).
Because of their continuous development in phase space, mechanisms (!) and

(2) provide the "streaming" or transport terms. We note that the ion density
N + must be sufficiently low (< 1016 cm-

3
) compared with the gas density No

so that the effect of ion-ion direct collisions can be neglected in comparison with
': 'ion-neutral collisions which are only included in Eq. (11). Hence No in Eq. (11)

can be taken as the Maxwell-Boltzmann distribution such that Eq. (10) with
Eqs. (11) and (4) is then the "linear" Boltzmann equation.

The recombination rate a(t) is therefore, in principle, determined as a general
function of gas density N, ion density N:, and time from Eqs. (9) and (6) via
the time-dependent solutions of Eq. (10) for the phase-space densities. The in-
teraction V(R) between the ions can no longer be assumed ab initio to be pure
Coulomb as N* is raised. It is the appropriate solution of Poisson's equation

V2 V = -2 fn+(R,t) - n-(Rt) (13)

where the local positive and negative ion densities are

n*(R,t) = 4w f n(Rvt)v dvi (14)

and where ( is the dielectric constant of the gas Z. In the reference frame of the
positive ion, n+(R,t) is simply the Boltzmann distribution

n+(R,t) - N + exp(V/kT) (15)

Recombination is therefore fully determined by the solutions of Boltzmann's
equation (10), Poisson's equation (13), and the kinetic equation (6) coupled
together. Various theoretical procedures have been already proposed [ I for the
solution of Boltzmann's equation (10) for the phase-space densities.
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3. The Generalized Debye-Smoluchowski Equation: Transport and Reaction
Rates

Rather than solve Boltzmann's equation (10) directly, assume that the sink
term, Eq. (4) in Eq. (2), can be replaced by a partially absorbing sphere of radius
S(-RE), an assumption suggested by the constancy at R >_ RE of the micro-
scopic kinetic expression (6) for the loss rate, such that Eq. (2) is in effect
equivalent to the generalized Debye-Smoluchowski equation,

aJn I a
-- t (R,t)+-- - IR j(Rt) = F 3n-(R,t)b(R -S) (16)

where F3 is the speed of reaction (via three-body collisions) for ions after being
brought to S by the diffusional-drift current,

j(R,I) = D exp(- V/kT) a [n(R,t) exp(V/kT)J (17)

On integrating Eq. (16) over 4wrR 2 dR, then the continuous-source result is
identical with Eq. (8) provided

j(SJ) = r 3n-(S,t) (18)
such that

a 3 (S) = 4S 2F 3  (19)

thereby confirming that the strength IP3 of the sink in Eq. (16) is the speed of
reaction within S. As F 3 - w, then

n-(S,t) = 0 (20)

for an instantaneous-reactive sink. Note that Eq. (16) is equivalent to the ho-
mogeneous equation (16) with its right-hand side set equal to zero solved subject
to a3(S)n-(S,t) equal to a(t)N-.

Equation (16) is of basic significance not only to ion-ion recombination and
chemical reactions in a dense medium but also to medical radiology, diffusion
and field controlled reactions in metabolizing systems (as enzyme-substrate
reactions in a cell [3], and diffusion across a membrane. While an exact time-
dependent solution to Eq. (16) can be obtained [3] for the field-free (V = 0) case,
no exact solution has yet been determined for general V although a large body
of literature exists on various approximate techniques [41 and numerical soluions
[5] for the Coulomb case. We provide here an analytical solution of Eq. (16)
for general V(R), subject to the condition that n-(R,t = 0) is initially prepared
as the Boltzmann distribution, Eq. (15).

The following approximate solution is based on the novel transformation from
R to the variable

R=J~rI~bik 1 - 1. dR _ (A2
R =f exp[V(R)/kT] - _ c x p( V/kT) 42111

JR ~ ~ R21 I dR IR)

a transformation not , ithout its physical significance. It is related I II to tic
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probability P, that an Ro ion pair will further contract by diffusion under V,
in the presence of an instantaneous sink at S (or else expand by diffusion ex-
pansion against V to infinite internal separation).

Let,

n (R,t) = n(R,t) exp(V/kT) (22)
such that Eq. (16) with Eq. (21) reduces to

ibn0(kt) b 2 a - (k t)]= - (23)

a where the transformed diffusion coefficient (cm 2 S- i) is

b i D dRJ (24)

The form of this equation is, in the transformed A representation, identicalwith that for the field-free case in the original R representation. Accordingly,
introduce scaled quantities,

w = (RIS) - t, fi f)t al2, n' p ( rIS) n .(c dt) (25)

such that Eq. (23) under assumption of constant b reduces to

an' A-
S( ) - n'(P,?) (26)

which can be solved by the method of Laplace transformation which incorporates
the initial condition.

The full solution of Eq. (16) appropriate to spontaneous reaction Eq. (20)
is therefore, after some analysis,!i .,s(R.N) ivexp(-V/kT) , IC -- I )]}ll

n(s)(Rj) erfc 2 di? (27)

The recombination rate then reduces to
S2 exp[ - VCS)/k T11

(s)(t) = 4rS2j(S,t)/N- = aTR I + 9(erDt)112" (28)

Iwhere the steady-state transport rate
aTR = 4rSD = 47rDR/P(S) (29)

with

s** dR
P(S) = R/9 - R, exp(V/kT) -R (30)

in terms of R, the natural length (e 2/kT). Under condition of equilibrium with
the field when the Einstein relation written as (DR, = Ke) holds, then for a
Coulombic attraction, the steady-state solution is,

as= 41rKe/[ I - exp(-R,/S)] (31)
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as previously obtained by Bates [6] in a steady-state analysis of an instantaneous
sink.

The boundary condition Eq. (18) for finite reaction under a field is,

r(S)n-(S,t) = D exp[-V(S)/kTJ - [n(R,1) exp(V/kT)] (32)
I°

which yields, in the transformed representation of Eq. (21),

n(S,t)d- (33)

where the transformed speed of reaction is

r = I (dRdR) (34)

Hence, after exercising due care, the full time-dependent solution obtained
from the Laplace transformation of Eq. (26) subject to the initial Boltzmann
distribution is given by, for a general interaction

n-(R,t) = N- exp(-V/kT) I + -R

X lexp(29R) expj 2 erfc(i + 9) - erfc f 35a)

where

&3__ ()
1
/
2  I & 3 )1/2ID /2S

( + () + ts )) S + expV(S)/kT (35b)

where,

(i(1) = (FR - S)/2(DI)1/ 21 - (R - S)/2(Dt)/' 2  (35c)

since D is assumed constant in eq. (24) and where

& = &(35d)

IF in terms of

& 3 = 4rs 2 r; &D = 4r,5 (35e)
The ratio of &3, the transformed reaction rate to &, the transformed transport

rate in Eq. (35) is therefore

&3 = a 3 exp[- V(S)/kT)] _ aRN (36)
aD aTR OTR

where aRN is used to denote the recombination rate that would pertain provided
a Boltzmann distribution of ions were maintained as at low gas densities, i.e.,

aRN(S) = 4VrS 2
r3 exp[- V(S)/kT] (37)

from Eqs. (19) and (36) such that Eq. (37) is the rate of reaction within S.
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The full time-dependent recombination rate now follows from Eq. (35a)
as,

a(t) a3n-(S,t)/N- = a I + iaRNI exp 2 erfc j[JT I (38a)

V aTR)

where 5(R = S) in Eq. (35c) vanishes, where j in Eq. (35b) is, with the aid of
Eqs. (21), (24) and (36),

+ aRNJ (D /"2

aTRJ S exp[V(S)IkT]

xs SfexpVkTR - 2dR} (38b)

and where

a = RNOTR

(aRN + aTR)

is steady-state rate of recombination. Hence the radiation boundary condition
(33) can be written as

n'(o,t) = (a/aRN) I °

which incorporates the full absorption (aRN >> d) and vanishing absorption (a
>> aRN) conditions appropriate to diffusion-controlled and reaction-controlled
processes respectively.

Thus the steady-state recombination rate a is controlled by the rate-limiting
step of reaction versus transport. At high gas densities N,OiTR << aRN such that
Oa -- aTR the transport rate. At low NcTR >> afRN such that a - aRN.

As t increases from zero, then
2 4

expx 2 erfcx - x x+ x 2  3 +. (39)

such that,

Ci(t - 0) ---aRN [I - _2 IOtRN) (D12  epV(l
I r (aTR.() S/

x Is exp( V/kT)R 2 dr} J (40)

decreases initially from the reaction rate aRN. As I -=, then

expx 2 erfcX ---- I (1 4. 3 .. (41)XV- 2X 2 4X4 ".
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such that the long-time dependence is

c(ta--) =aI +( a sexp[-V(S)/kT
(aTR) rDI) 1/2

X is f xp( V/kT)R- 2 dRJ (42)

which tends eventually to the steady-state rate a for >> (S 2/D).
The transient rates, Eqs. (40) and (42), for short and long intervals of time

are best observed at high gas densities when aRN >> aTR a a, respectively. The
- full transient densities (35) and rates (37) are of basic significance to all diffu-

sion-drift phenomena in gases or dilute solutions, as ion-ion, ion-atom, and
atom-atom recombination in dense gases, or as coagulation of colloids in ionic
solutions and in general to chemical reactions in dense gases.

The steady-state ion density from Eq. (33a) is

n-R,t o) = N- exp(-V/kT) I - a P(R)J (43)

* S The full time dependence in Eq. (38a) for a is contained in Eq. (38b) for
which, for a pure Coulomb attraction, varies as

= (1 + ]T/2 (Iexp(Re/S) - 1 (44)

where the scaled time is

T = t/(S 2/D) (45)

in units of (S2/D), the time approximately required for an ion to diffuse from
the boundary to the center of the sink.

4. Simple Model for Reaction Rate

Assume that a reaction occurs following strong collisions between gas atoms
and ion pairs with internal separations Ri -< R. The trapping radii appropriate
to interaction V is then the root of [7]

V(R + X,) - V(Ri) = 3 k-T1i (46)
2

where X, is the mean free path of the ion i(=1,2) in the gas Z and where bi is
a collision parameter so chosen that the deduced reaction rate reproduces in the
limit of low N results [8] obtained from the quasiequilibrium microscopic
treatment of ion-ion recombination at low N. Condition (46) originates from
the requirement that an ion pair upon collision with Z is rendered incapable of
expanding outwards from Ri to Ri + X where the next collision would occur.
It is a generalization of Natanson's condition [91 and as X - oc, Eq. (46) reduces
to Thomson's criterion [101.

p.
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On recalling that each species of ion i have different mean free paths Xi in
the gas Z and different sink radii Ri, the model for the rate (YRN of reaction
within RE is therefore generalized from Eq. (37) to give [71I aRN(RI,R2) = 7r[R2W(XI)CIEI + R W(X 2 )C 2E 2

- R'W(YI)W(Y 2)G](v12) (47a)

where (v 12) is some averaged ion-ion transport speed of approach, and where
the probability for an ion i-neutral Z collision for ion pairs with internal sepa-
ration R S Ri increases with gas density to unity as

W(Xi) = I - ('/2X?)[I - exp[-2Xj)(I + 2Xi)l, Xi = Re/X (47b)

for a straight line trajectory. The factor

Ei = exp[-V(Ri + Xi)/kT] exp[V(R)/kT] exp(-3/26i) (47c)

acknowledgments the Boltzmann enhancement in the ion number density due
to the field at (R, + X/) at which the last ineffective ion-neutral collision occurs
just before the ion enters the recombination sink within Ri. The factor

C,=[l(k2T)f- + )  (47d)

acknowledges the focusing effect of the interaction on the assumed straight-line

ion-ion trajectory between (Ri + A,) and Ri. The minimum of R 1 and R2 is RW
such that W(YI)W(Y 2) with Yi = RM/Xi is the probability of simultaneous

* ion-neutral collisions within Ru, a probability counted twice in the first two
terms of Eq. (47a). Simple geometric arguments show that G in Eq. (47a) is
either CiE, or C2E2 depending on whether Ru is R, or R2, respectively.

5. Interaction V

On inserting the steady-state ion density of Eq. (43) into Eq. ( 13), Poisson's
equation become

* R 2 1 V''k T)j=2j- exp(V/kT)|R2 dR 6R (i
-{I - ( aI P(R) I exp(-V/k T)l_ R ? RE (48)

aTR) P(RE)j

where the "screening" distance is

Rs = (8rN*R,/() - 1/2  (49)

and where RE is the sink radius S of Sec. 3. An analogous time-dependent
equation follo% by inserting n-(R.t) of Eq. (35a) into Poisson's equation. Eq.
(13).

Hence the term of Eq. (48) contains an explicit dependance on V(R) via
P(R) of Eq. (30) and implicit and explicit dependances via OTR of Eq. (29) and
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ameN ,4 Eq. (47a) in Eq. (38c). The interaction must therefore be solved from
Eq. (48) %df-consistently with the recombination.

At low N, the I term of Eq. (48) tends to unity at all R, while, at high N, it
increases from zero, at R 1 RE, to unity at asymptotic R. For no plasma sheating
(Rs -p ®), the interaction V is Coul41bic.

When V << kT, the exponentials in Eq. (48) ,pay .be linearized to yield the
solution

V() -(~ j* exp(VRRs) - a 2  (50)

• . where
aH = 47rDR, = 47rKe (51)

is the Langevin transport rate. Direct numerical integration of Eq. (48) which
may be replaced by equivalent three coupled first-order differential equations
shows that Eq. (50) remains a highly accurate solution for R Z 0.1 Re. When
a<< af as at vanishing N, Eq. (50) yields

• e2VOH(R) f - exp(-R/Rs) (52)

R

the Debye-Hfickel interaction (DH). The recent Monte-Carlo simulations [ 12]
based on this interaction DH are therefore invalid [i, 13] for the range of gas
densities N covered. The interaction of Eq. (52) is valid only in the limit of
vanishing gas density, i.e., as N - 0 when the rate a of recombination is van-
ishingly small compared to the rate of ion transport. When a - aH as at high
gas densities N, Eq.(50) is Coulombic (C) at R - RE which is much smaller
than Rs - 1.SR, appropriate to N* - l014 cm- 3, and Eq. (50) tends to the
mean of C and DH at asymptotic R which is self-consistent with the choicea
= aHf.

6. Transient and Steady-State Rates

In Figure I is illustrated the time-dependence of the recombination rates a(t)
Eobtained from Eq. (38) for various gas densities N (in units of NL, the numbrr

density 2.69 X 1019 cm - 3 at STP). The transport rate aTR is given by Eq. (3 )
and the reaction rate aRN is obtained from Eq. (47) for a fictitious (but repre-
sentative) case of ions of equal mass (16 amu) and mobility 2 cm 2 V- I s-I re-
combining in an equal mass gas (for which 5, = 0.6 [7]) at 300 K.

For high N,a(t) decreases initially from aRN, which is >>aTR, to its steady-
state limit which is aTR, i.e., for the assumed initial Boltzmann distribution.
reaction first occurs for the ions within S and then ion transport begins in an
attempt to compensate for the resulting hole in the distribution. For low N <
NL, (=1 atm.), a linear variation of oY(t) with I is exhibited since the reaction
rate aRN << aTR. Thus the transition from reaction to transport is best observed
for dense gases. Here the large reaction rates originate from the greatly enhanced

- -



726 FLANNERY

e?25- 10 N/NL tS2/Ot IV12S

20- (3 n1
-ls 2 1

10 3

o-
U 2

Uj

LOG IosM2)

Figure 1. Explicit time dependence of recombination rate a(t) a~t various gas densities, as
indicated in units of Loschmidt's number NL (2.69 X 101" CM at STP). Characteristic times
(S 2/D) for diffusion are also indicated (from ref. I)

Boltzmann factors E1 in Eq. (47a) which more than offsets the inherent reduction

in the trapping radii R,. Also shown in Figure 1 are thle characteristic time scales
(S 2

/D) for diffusion across a sink of radius S which from E3q. (46) is compressible

I wi l I "

- I~f~I+

IN

A.-,

GAS DENSITY N (IN NL-UNITSI

l-igurc2. Recombination rate coefficient a(cml s) at 100 K for (Kr+ I:-)in rarcgascs.
as a function of gas density N (in units of Loschmidts number denslit) N1. - 2.69 X 10"'
at STP): (- ) Present treatment with experimental mobilities; (X.O) universal Monte-Carlo
(hard sphere) plot (ref. 14). (0) Mionte-Carlo (polari~ation) results (ref. 12).
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with N. This effect could therefore be detected by modern laser spectroscopic
techniques based on rotational or vibrational transitions in molecular ions. The
steady-state rates are independent of the initial condition.

* In Figure 2 is illustrated the variation of the steady-state rates a(t - ')for

the realistic case

Kr++ F- +Rg - KrF* +Rg (53)

at 300 K with gas density N of various gases Rg = Ne, Ar, Kr, Xe. Agreement
with Monte-Carlo computer simulations 1 12, 14] is very good for low N'. Figure

* 2 essentially shows the variation with N of the asymptotic limits of Figure 1.
Both figures therefore provide a comprehensive account of the recombination

rate a as a function of time, and gas density. The present theory is also significant
in other situations involving the rate of disappearance of a dense ionization track
produced by a directed high energy beam of particles or radiation.
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of recombination. Further development of the theory leads to interesting insights into3the full variation with N of a, which is shown to yield the correct limits at low and
high N. The recombination rate a is determined by the limiting step of the rate arn for
ion reaction and of the rate atr for ion transport to the reaction zone. An analytical
solution of the time-dependent Debye-Smoluchowski equation, which is a natural
consequence of this theory, is provided for transport-reaction under a general inter-
action V, for an instantaneous reaction (rn > attr) and for a finite rate (a'n ; at,) of
reaction within a kinetic sink rendered compressible by variation of gas density.

mm Expressions for the transient recombination rates a(t) are then derived, and are
illustrated. The exhibited time dependence lends itself to eventual experimental verifi-
cation at high N.

A theory that investigates the variation of a with ion density N± is also developed.
Here the ion-ion interaction Vcan no longer be assumed ab initio to be pure coulomb but
is solved self-consistently with the recombination. Recombination rates for various
systems are illustrated as a function of N by a simplified method for the reaction rate.
Finally, two theoretical procedures are proposed for the solution of the general phase-
space ion distributions.

1. INTRODUCTION

Ever since the pioneering developments by Langevin (1903) of ion-ion recombination at high
gas densities N, and by Thomson (1924) of the low density limit, theorists have sought a basic
theory to link the linear three-body (Thomson) region to the nonlinear gas density region with
the aim of eventual connection to the high density (Langevin) region in which the combined
macroscopic effects of mobility (Langevin 1903) and of diffusion (Harper 1932, 1935) control

O events. Natanson (1959), by generalization of a method of Fuks (1958) on evaporation of water
droplets in a gaseous medium, provided some insight to this link, although his approach remains
phenomenological in the spirit of th-- approaches of both Langevin and Thomson. The concept
of a trapping radius was invoked in all three studies and was so chosen by Thomson and Natanson
that a single strong ion-neutral collision for ion pairs with separations within this radius produced
recombination. Mechanisms resulting in mobility or diffusion, or both, were treated (if at all)
as macroscopic.

These phenomenological approaches masked the essential theoretical problem, which is
complex and difficult in that the macroscopic effects and recombination sinks require address in
language of their basic microscopic origins. Any simplifications introduced through concepts of
mobility, diffusion and trapping radii for description of macroscopic phenomena without
recourse to their microscopic origin are inherently theoretically unsound, unless the full and

' .detailed phase-space history of an ion pair has first been established, with all macroscopic charac-
teristics being the effect of, rather than the cause of, such microscopic behaviour.

Suffice it to note this history has, in general, not been established, except in the low-density
limit when diffusion-mobility effects are sufficiently fast to support equilibrium such that recom-
bination is limited by reaction alone, as opposed to transport. Bates & Moffett (1966) and Bates &
Flannery (1968) succeeded in developing the first rigorous theoretical account of recombination-
reaction based on microscopic energy-change principles; they then established by quasi-
equilibrium kinetics the essential development in internal energy E of ion pairs recombining
solely by reaction. Bates & Mendag (1978a), by distinguishing between expanding and con-
tracting ion pairs, have proposed an interesting extension of the quasi-equilibrium method into
the nonlinear region and have shown a variation of the recombination coefficient a with gas
density N, consistent with the initial nonlinear ascent with N as given in the phenomenological
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treatment of Thomson (1924). However, at pressures greater than I atmt (at 0 C), the Thomson
-1 model predicts saturation in a, and fails. Coupling with the macroscopic effect of mobility, i.e.

the diminishing effect of accelerations produced between collisions by the mutual ion-ion
electrostatic field, is absent in both treatments. As will be shown here, the Thomson model is a
model for the reaction rate and neglects the rate of ion transport, an assumption valid only at
low N. Bates (1975) generalized the Harper-Langevin result by including (macroscopically) both

* diffusion and drift in the ion-transport rate which in the limit of high Nis the rate of recombi-
nation since reaction proceeds infinitely fast.

The above references reflect the key pivotal theoretical developments, until now, that have
contributed to the basic understanding of ion-ion recombination in a gas.

Since the overall theoretical problem is so complex and difficult, resort in the meantime has
been made to procedures (Flannery 1978, Flannery & Yang 1978a, b, Wadehra & Bardsley 1978,
Flannery 1976) that are all essentially modifications of Natanson's expression (based on the strong
collision concept) or else to Monte-Carlo computer simulations (Bates 198oa, b; Bates & Menda§
19 7 8b, Bardsley & Wadehra i98o, Morgan et al. i98o) which, although they produce numerical
coefficients a, do not deepen theoretical understanding of the basic issues involved. However, the
Monte-Carlo results may exhibit special characteristics requiring further theoretical explanation
(as in Bates i98oc). The renewed activity in recombination has been largely prompted by
continuing interest in the overall problem, and in some measure by the key role (cf. Flannery
1979) of ion-ion recombination in populating the upper molecular states of rare gas-halide
lasers which operate not only at high gas pressures (4-10 atm) but also at high ion-densities
1012 < N± < 1014 cm- 3 . This is a region for which laboratory experiments of benchmark quality
are as yet not forthcoming because of severe problems (even at low N±, but especially at inter-
mediate and high N).

The aim of this paper is to present the first basic theoretical account of a classical problem, i.e.
the determination of the recombination rate o of

X + Y-+Z-) [XY] +Z (0.1)

as a function both of gas density and of ion density. The first account of the explicit variation
*, of a(t) with time will also be provided. To provide some insight, it is worthwhile to review

the essential underlying phenomenological features of ion-ion recombination within a modern
perspective.

1. 1. Physical concepts

At high gas densities N, the relative velocity v of the positive and negative ions X + and Y-,
labelled I and 2, respectively, is governed by Vd, the drift velocity (K, + K2)E acquired from the
1-2 mutual electrostatic field of intensity E by the ions with mobilities K, ,2 in the neutral gas Z,
labelled 3. The ion-neutral collision frequency (v/A) in terms of the mean free path A, of either
ion i is very high and Vd is therefore in equilibrium with the field. The constant steady-state Vd is
achieved as the balance between accelerations in the field direction between i-3 collisions, and
decelerations during i-3 collisions. The net (inward) flux F,+ (cm- 3 s- 1) of negative ions crossing
spheres of radii Rx centred at each positive ion, distributed with frequency N +cm -3, is about
4nR kvd N-N - so that, under the assumption that all ion pairs with separations R less than Rx

t atm = 101 325 Pa.

32-2
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are assured of eventual recombination, the recombination rate at high gas densities Nis equal to
the rate of (drift) transport:

1 dN± Fi,
2 d N N F-+ = 4ne(K, + K2), (1.2)a= -N N- dt =

This is the Langevin result, which decreases as N - . The rate (1.2) is the rate atr of ionic transport
in the absence of diffusion, which is appropriate only at asymptotic R, and is valid when the rate
Sarn of reaction (by three-body collisions within Rx) is much faster than 'tr, as at high N where the
large number of third bodies ensures instant deactivation of the ion pairs. The above method
(fortuitously) provides the correct result only for a pure Coulomb attraction; for a general
interaction, the full diffusional-drift equation (§ 2.4) must be solved.

At low gas densities N, ion-neutral collision frequencies are vanishingly small, so the relative
1-2 approach velocity v becomes much higher than the thermal velocity, and a large fraction of

the close ion-ion 1, 2 encounters (within Rx) do not result in mutual neatralization by electron
transfer. Of the velocity-changing i-3 collisions, the ones effective for recombination are those
that occur for 1-2 separations R < RT where the electrostatic field is sufficiently strong for
trapping. Since no angular momentum barrier at positive energies exists for pure coulomb
attraction, trapping involves only those ion pairs with internal energy rendered negative by i-3
collisions. If it is assumed that recombination results from a single strong i-3 collision (i = 1, 2)
within RT centred at the other ion, then for low N, a increases linearly with N as

Otio = Iq(RT) ((T/+<v>/A,) RTNo d W, (1.3)

in terms of some averaged collision frequency (v>/Ai and of Keq, the equilibrium constant (4nR )
averaged over all energies for formation of R-ion pairs with internal separations R < RT. The
sum of the diffusion cross sections for each i-3 encounter is (rd. For a suitable choice of the trapping

radius RT, (1.3) agrees with the low density limit of Thomson's result.
As Nis raised, the ion-sink strength represented by a1o increases to such an extent that its effect

on the number density N(R) of R-ion pairs becomes important and must be cobpled to the
i solution of N, though the diffusion-drift equation thereby resulting in an overall increase with N

less than linear (see § 2.3) and in eventual decrease, i.e. the rate of reaction increases, becomes
comparable with, and eventually becomes much faster than the transport rate as N is increased.
In contrast, however, Thomson assumed that as N is raised the probability P(RTI/k) of effectivet
ion-neutral ccllisions, for ion pairs with R < RT, eventually increased to unity as

P3(X) = I(X) + W(X) - W(X,) W(X), X, = RT/A,, (1.4)
where the individual ion-neutral collision probability is (Loeb 1955)

14(X) = I -(1/2X')[1-exp(-2X) (1+2X)]- 1,hiow N,(.

- which yields (1.3) for N low, but which leads to a defective result at high N (althoughThomson's
survival-diffusion concept is essentially correct). The extension by Bates & Menda§ (1978a)
into the nonlinear region is consistent with the initial nonlinear N-variation of (1.5). The
Thomson rate is only the reaction rate, while Bates & Menda§ introduced the additional transport
mechanism of diffusion.

The failure of the Thomson model at high N is due both to the neglect within RT of the
decreasing effect of accelerations produced by the ion-ion field between frequent ion-neutral

t In the sense of promoting the reaction phase of the recombination.



THEORY OF ION-ION RECOMBINATION 451

uf collisions, a mobility effect required for thermodynamic equilibrium in the absence of sources
and sinks within RT, and to the explicit neglect of ion transport by both diffusion and drift under

V outside the reaction R.-sphere. Both neglected effects, which originate with the transport of
ions in phase space under a field, are a natural consequence of the basic theory (§ 2). Thus the
Thomson rate is essentially the rate of reaction arn within an incompressible field-free sink S of
ions brought to S not by ion transport (which is ignored) but by their thermal energy. Within
the P-factor of (1.4), diffusion is acknowledged only within the field-free sink through the

decrease in survival rate of the ions towards increasingly effective collisions with an increasingly
dense gas. The survival-collision probability P3 remains therefore limited to unity at sufficiently
high N (infinitely large collision probability for ions with infinitesimal survival probability).

It will subsequently become apparent that recombination occurs by reaction, at rate arn, of
ion pairs (via three-body effective collisions) brought together by ion net transport at a rate a2 tr
such that the rate a of recombination is determined by the rate-limiting step, i.e. by

a = arn~tr/(arn+ Xtr) (1.6a)

where arn - (rR.) P(X) exp[- V(RT)/k T] (v 12 > 0.6b)

is the rate of reaction within RT, and

atr = 4nD exp (KV/De) R-2 dR = 4tKe[1 -exp ( -e 2/RTkT)] -  (1.6c)

is the transport rate in terms of the coefficients D K(k T/e) and K for relative diffusion and
i mobility respectively and of the integral which is related to the probability for diffusional escape
in the presence of an instantaneous sink at RT and an attractive interaction V which is taken as
Coulomb. In this sense, Langevin and Thomson focused on each of the essential components
(transport and reaction, respectively) required for a complete theory of recomLination. Each
component provides the correct limit: i.e. at high N when the reaction is instantaneous in com-
parison with transport (arn > atr), the overall rate a from (1.6a) reduces to (1.6c) while at low N,
when the ionic transport is faster than the reaction (atr > am), (1.6a) reduces to (l.6b).

The reaction rate arn is the recombination rate that would pertain (§ 2) provided a Boltzmann
distribution of ions were maintained, a situation that results in no net diffusional drift.

Bates & Flannery (1969) have already noted that Natanson's expression, designed to cover all
N, could essentially be written as (I.6a). By analogy with the behaviour of a steady current
through an electrical network of two capacitances in series, Bates (1974) expressed a 'series'
rate such as (1.6a) in terms of a theorem. It will subsequently become apparent that the full
microscopic theory of ion-ion recombination places (1.6a) on a firm theoretical foundation
and yields remarkable analogies to many macroscopic areas of physics (fluid dynamics, evapora-
tion theory, coagulation of colloids, diffusion in a field, chemical reactions in dense gases,
fluorescence quenching, electrostatics (cf. Appendix A), etc.) and that therein lics partly its
fascination.

1.2. Physical concepts in the present theory

The present theory allows for the full evolution of the density of ion pairs in phase space by
effective and ineffective t microscopic collisions, by inward and outward diffusion due respec-
tively to the presence of the recombination sink (at small and intermediate R) and to the
diffusional escape reaction to the effect of inward drift (at larger R), and by the accelerations

t In the sense that these collisions promote thermodynamic equilibrium by ion transport.
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produced by mutual electrostatic ion-ion fields between ion-neutral collisions in an increasingly
dense medium. In so doing, the macroscopic effects of diffusion and mobility are properly traced
from their microscopic origins which in turn are responsible for the recombination sink, so that
various physical mechanisms are not twice included (unwittingly) through some particular
graft ofmacroscopic phenomena and microscopic mechanisms. In low density treatments (Bates &
Moffett 1966, Bates & Flannery 1968), the acceleration due to the ion-ion interaction is included

W correctly; but as the gas density is raised, the diminishing effect of this acceleration due to
increased collision frequencies must be properly acknowledged. Thermal equilibrium at high gas
densities, without the effect of sinks, sources or chemical reactions, is achieved as a balance
between the accelerations so produced by the field between collisions (or by macroscopic inward
mobility) and the outward diffusi,-n ,- ions due to the R-inhomogeneity produced by the

ion-ion interaction. Presence of a s.,,k naturally implies additional inward diffusion, which
becomes effective at smaller and intermedi te R.

1.3. Notation

The equation in the text in which the symbol is first precisely defined is given in parentheses.

arecombination rate (cm 3s-'), (2.51)
arn, OCzo reaction rate (cm 3 s- 1) or recombination rate appropriate to a Boltzmann

distribution of ions, recombination rate at low gas densities, (2.61)
Oe3 arnexp[V(R)/kT], (2.44), such that a3(R)n-(R) is frequency of reaction
Swithin R-sphere.

ah Langevin rate (4UKe), (1.2)

atr(R) transport rate [ah {Re fn exp (V/k T) R-2 dR}-'], (2.63)
abi atr(R,); recombination rate at high gas density, (2.63)
F3(R), J(R) speed of reaction of R-ion pairs, (2.82)

C all states of ion pairs in the energy continuum, (2.5)
D diffusion tensor, (2.37)
D relative diffusion coefficient (cm 2 s-i) of positive and negative ions, (2.43)

diffusion coefficient in the presence of a sink, (5.49)
9, diffusion drift operator, (2.46a)

a collision parameter, (4.15)
E electric field intensity, (2.3)
-E energy of arbitrary bound level (-E) of ion pair, (2.47a)
E-8 , E_v, E_.q energy of bound levels -S, -V, and -M of ion pair such that E_1 =

max [Ev, E-], (2.49)
E, internal energy of the ion pair in state i
e electronic charge (4.80324 x 10-10 e.s.u)
F inward flux (negative ions s - 1) across a sphere centred at a positive ion, (2.69)
Fo(vi) dvi Maxwellian distribution of speeds, (2.13)
g, g1  ion-neutral relative speed, and velocity, (2.4)
j(R, t) current (negative ions cm-s -1 ) across an R-sphere centred at a positive ion,

(2.45b)
k Boltzmann constant (1.38066 x 10- 3 JK-1)
K relative mobility (cm 2 Stat V -i s- 1) of positive and negative ions, (2.38), (2.43)
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kif (R), collisional rate coefficient (cm 3 s-1) for conversion of R1-ion pairs (with internal

kir(El, Er, R) separation R and internal energy Ei) to Re-ion pairs by collision with a third
body (gas atom), (2.6)

L(vi) peculiar path length of ions with speed v, in absence of recombination sink,
(5.34, 5.3.5)

11(R, E) peculiar path length of ions in recombination process, (5.31)
SA mean free path averaged over all speeds of ions in equilibrium, (1.3)
-M bound level of energy E_. such that E_.I = max [E~v(R), E_,, (2.11)
N gas bulk density (cm- 3), (1.3)

NL gas density (2.69 x 1019 cm- 3 ) at s.t.p. (Loschmidt's number), after (2.128)
N!-  ion bulk density (cm- 3 ), (1.2)
NG(R, v0, t) phase-space gas density (cm- 3/(cm S-1)3), i.e. gas density per unit dv 0-interval,

(2.4)
N i R, t) configuration-space gas density (cm- 3) f Ar(R, v0, t) dvo, (2.34)

n(R, vi, t) phase-space density of negative ions, (2.2), (2.3)
ni(R, Vj, t) 4itv1ni(R, v1, t) (cm- 3/(cm s- )), density ofnegative ions per unit speed-interval

S(R, Et) about vi, (2.8)
no(R, vi) Maxwell-Boltzmann ion density per unit dvy-interval, (2.13)
n(R,t)
n(R, t) . configuration-space negative ion density (cm- 3) f ni(R, vi, t) dvi, (2.26)
n- (R, i) I

U N*(R, El, t) configuration density of Ri-ion pairs per unit dR-interval, 4irR 2n(R, Ej, 1) N+
(cm- 4) with internal energy E < 0, or per unit dRdvi-interval for E, > 0, (2.10)

N!*(R, E,O1 ,t) phase-space density of Ri-ion pairs, i.e. configuration density per unit dv-

interval, (2.2)
N0(R, Ej) Maxwell-Boltzmann ion pair density per unit dRdE,-interval, (2.14)
P3  probability of an ion-pair-neutral collision, (1.4)

Pd(R), P(R) Rfn exp (V/kT) R- 2 dR, (2.56), which is such that P(Ro)/P(RE) is the prob-
ability .Jk that an R0-ion-pair contracts by diffusional drift in the presence of an
instantaneous sink at R,, (2.77)

Pc(R, RE) (2.77a) for instantaneous sink and (2.77b) for finite-rate sink.

• t(R, RE) probability that an R-ion pair expands by diffusion to infinite internal separation
against attractive force, (2.78)

QF. X integral cross section for ion-neutral elastic (E) or charge-transfer (X) collisions,

(2.7), Appendix B.

R, natural unit of length (e2/k T or e2K/De) appropriate to coulomb attraction,
(2.57) z 55.7nm at 300K.

RE, R(E) outermost turning point associated with bound-level of energy-E, (2.17),
(2.51); maximum radius of three-body collision sink

R, Internal separation of ion pairs with internal energy El, before (2.3)
Rj trapping radius appropriate to ion species i as a function of gas density, (4.17),

(4.21)
R, screening length, (4.7)
RT Thomson trapping radius (2e2/3k T) z 37 nm at 300 K, (4.17)
S radius of strong-collision sink, compressible with increasing N, (2.70, 2.82)
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o.(g, ') differential cross section for ion-neutral scattering in the centre-of-mass frame
T gas temperature (K)

Tj time-interval between collisions, (5.20), (5.34)
V(R) ion-ion interaction potential
-V bound level given by intersection of R and V(R), (2.5)

V0, Vi velocities of gas atom and ion before collision, (2.4)
V;, Vr velocities of gas atom and ion after collision, (2.4)
IV" probability for an ion-neutral collision, (1.5)
A', internal kinetic energy of relative motion ofan ion pair, normalized to k T, (5.36)

2. THEORY oF ION-ION RECOMBINATION AS A FUNCTION

OF NEUTRAL GAS DENSITY

In this section is presented the development of the basic equations to be solved for determi-
nation of the phase-space densities of ion pairs (§ 2.1), and the development (§ 2.2) of the basic
expression for the rate a ofrecombination. An exact expression for the steady-state a is provided
(§ 2.3) in terms of the rates for ionic transport and reaction, and similarities with a density-
dependent reaction sink are explored in § 2.4. Finally, in § 2.5 is presented an analytical time-
dependent solution of the Debye-Smoluchowski equation associated with a general spherical
field for time-dependent ion densities and recombination rates a(t), a macroscopic equation
which follows quite naturally from the present microscopic theory.

2.1. Basic equation for ion-pair phase density

Consider the drift of negative ions of density ni(R, vi, t) and velocity vi at time t under inter-
action V(R) across spheres of radius R centred on each positive ion, which are distributed with
density N+ cm -3 , so that the number density N* (R, Ei, t) of ion pairs with reduced mass M,,
within the R-shells of thickness dR, with internal energy

E = iMiv2 + V(R), (2.1)

and with internal motion directed along t6i, is

N1V(R, E1,6, t) dR = 4tR2 dRni(R, vi, t) N . (2.2)

Two approaches with similar effect can be adopted. The fate of an ion pair may be established by
considering its previous history of elastic and inelastic collisions with the neutral gas. Here the
mutual interaction V(R) between the positive and negative ions is internal to the ion-pair system.
The other approach, which we adopt here, is based on the motion of a given species of ion
(negative ions, say) moving under a field of intensity E - V V/e (which is conservative and now
external to the negative ion) and undergoing elastic ion-neutral gas collisions. Expressions (2. 1)

- and (2.2) link the basic quantities associated with each approach.
The present development is based on the Boltzmann equation (cf. Chapman & Cowling 1970),

which (in this instance) equates the complete time rate ofchange of the phase-space distribution
of ions with the appropriate ion-neutral collision rate integrated over the velocity distribution of
the neutral gas species. The basic assumptions inherent in the derivation of the Boltzmann
equation from the fully general Liouville equation (or from the B.B.G.K.Y.t hierarchy of

t After Bogoliubov, Born and Green, Kirkwood and Yvon who independently derived the equations between
1935 and 1949 (cf. Ferziger & Kaper 1972).
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equations) for the phase-space distribution of all ionic and gas particles are (a) that only binary
collisions occur via (b) interactions Vi(R) of short range R outside which (c) the precollision
velocities are distributed randomly with no correlation (molecular chaos), and (d) that the
distribution functions do not vary appreciably during an encounter. These approximations are
fully justified for percussive collisions between spherical particles. For van der Waals neutral-
neutral and polarization ion-neutral attractions for which VI - R- 6 , and V - R- 4 respectively,

m long-range collisions do not, however, furnish the significant contribution to the collision integral,
and so for ions moving in a gas, the Boltzmann equation remains valid.

The phase density ni(R, vi, t) of negative ions (to be called Ri-ions which form Ri-ion pairs) of
mass m (- Mi,, the reduced mass of an ion pair) in a conservative external field of intensity E
satisfies the Boltzmann equation (cf. Chapman & Cowling 1970, Ferziger & Kaper 1972, Holt &
Haskell 1965)

n,(R,vi, t)t +v. [VRni(R, vi, t)] + M). V.n(Rv1,t)= ) (2.3)

in which the explicit time rate of change (?ni/t) results from the following four mechanisms.
(a) The continuous transport (diffusion) of R-ions across the R-sphere due to the R-inhomo-

gencity in ni.
(b) The continuous drift in velocity space due to E which produces an acceleration eE/m in

each of the n, AR ions initially with velocity points vi within the phase element AvjAR, i.e. the
R-ions drift in velocity space at the common rate E/rm and are therefore lost from the initial
elementary region.

I(c) The quasidiscontinuous change (ani/t)ei of ions with velocities within Avi upon elastic
ion-neutral collisions which therefore remove ions from one velocity element Av to another.
Replenishment to Avi is due to similar displacements from other elements of velocity space.
Hence,

* LnI (R vi, )] =f n(R, v, t) NO(R, v', ) - ni(R, 0i, 1) N0(R, 00, t)f[go(g, Vfr) dQ]} do,,

(2.4)

where NO(R, vo, t) is the phase-space density of neutral gas species, and where the ion-neutral
differential cross section at relative velocity g,( = Vt- v0) for elastic scattering by angle i into
solid angle dQ is o- dQ. The Q-integration is over that scattering region Q' made accessible for the
production of speeds associated with final ion and neutral velocities Vr(vi, vo, P.) and v;(vi, vo, Q),
respectively consistent with initial fixed vt and 0. Note, however, that these elastic scattering
terms produce energy changes (inelastic effects) to the internal energy Ei of an ion-pair system.

(d) The loss of ions (On,/at)s due to the recombination sink tends to cause a redistribution
in internal energies E, of an ion pair with fixed internal separation R and represents, in this
sense, a transition probability. We seek to develop a theoretical expression for the microscopic
and overall effect of this term.

Because of their continuous development in phase space, (a) and (b) provide the 'streaming'
or transport terms. We note that the ion density N± must be sufficiently lo" (less than about
1016 cm- 3 ) compared with the gas density No so that the effect of ion-ion direct collisions can be
neglected in comparison with ion-neutral collisions which are only included in (2.4). Hence X\
in (2.4) can be taken as the Maxwell-Boltzmann distribution such that (2.3) with (2.4) is then
the 'linear' Boltzmann equation.
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As already mentioned, (2.4) produces inelastic transitions (E -+ Ef) in an Ri-ion pair and on
integrating over v; dt1 , an equivalent expression for (2.4) can, on replacing v, by (2.1), therefore be
written as, an, (R E1et = N[ n(RE,t)krj(R)-ni(RE 't) E- kit(R), (2.5)

where N is the number density of gas atoms (or molecules) Z, and Nkif(R) is the frequency at
which an Ri-ion pair is converted into an Re-ion pair by elastic collision of either ion with Z, i.e.

N Y. k(R) S Nk;f(Ei, Er, R) dEr= 4xNo(vo) gr(g, ;) d(cos t) d] vo2 dvo d(cos 0);

cos0 1 = 6o'1 ,  (2.6)

where vmio, Vm&x and 0' are such that a final speed vf of ion-ion relative motion is obtained from a
given vi and g and where Af is the number of states in the energy interval dEt about Et. For
example, for symmetrical resonance charge-transfer ion-neutral collisions, with cross section Qx
independent of relative collision speed, we have (Flannery 598o, Bates & Moffett 1966)

~k~r(EE~,R)1+c X ~ x "aF 0 (v0 ) dvo
ki(E|, Er, R) _ fk'tdEtf Qx f dEf .Fo d[v- (v+ 2A/Ml)]i, (2.7)f ( c ) 2M viJ  drin Vo

where F is the Maxwellian distribution in speed v0 of the neutral gas, c is the ratio of the mass M,
of the colliding ion to the mass of the spectator ion, and A = T - T, the change in initial and final
kinetic energies iMl (I+ c) vi.!t of relative motion of the positive and negative ions. The f-sum-
mation, over all final bound and ontinuum states of the ion pair, can be replaced by an integral
when a quasicontinuous spectrum ef intenal energies is assumed. Detailed expressions for the
rates kif associated with elastic ion-neutral collisions have been provided (Bates & Flannery 1968,
Flannery 1981 a). The sum or integration is taken over all final states f of the ion pairs, from the
continuum C down to a level - V, the lowest accessible at R appropriate to interaction energy

* V(R). Summation of (2.5), the elastic collision integral, over all initial levels E (or integration
over all ion speeds vi) is null, in accord with the fact that the number density of all ions is con-
served in elastic collisions. Implicit in the rate (2.5) are the following assumptions.

(a) The gas is in thermal equilibrium so that its density distribution N(v,) in gas velocities is
isotropic, is independent of both time t and position R and depends only on the speed v0.

(b) The number densities N± of ions are much less than N, so momentum and energy imparted
to the ions by their mutual field of intensity E and transferred subsequently by collision with the
gas Z have a completely negligible effect on N0(v,). When such thermal gradients do exist, they
cause thermal diffusion in mixtures. The centre of mass of the ion pair is therefore assumed to be
in thermodynamic equilibrium with the gas Z.

(c) There are spherical symmetric R- and v-distributions of negative ions about each central
positive ion so that the ion densities in (2.4) and (2.5) are related at fixed R by

ni(R, t'1, t) = 4nv2nI(R, vi, t) - n (R, Ei, t), (2.8)

V n1(R, E, t) m 41t ni(R, vi, t) vsdt' = ni(R, vi, 1) dv. (2.9)
i-vJo

Also the density N of ion pairs n the R-shell of thickness dR is related to the negative-ion density
ni by

N (R, v,t) dR = (41tR'dR) n (R, v,t) N+ = N* (R, E1,t) dR. (2.1to)
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(d) The interaction V between the ions is switched off during the ion-neutral collision to be
Uconsistent with the left-hand side of (2.5), in which the field is external to each negative ion, i.e.

the field cannot be included on both sides of the Boltzmann equation (2.3).
The sink term in (2.3) can be written as,

:M n(R, El, t)N -R) N -M(R)
=N Z n(R, Er, t)k-(R) Z Nt(R,Eft)ki(R) (2.11)

St s t- -V(R) 4nR2N+t -v(R)

where the energy of the bound level - M is EM = max[E-v(R), E,] in which E_. is the
negative energy of the bound level - S below which recombination is assumed stabilized against
any upward collisional transitions in energy. If the level - V(R) of energy E-v(R) at R is above
- E, then the sink term is ineffective. The sink term (2.11) in effect ensures that upward
transitions, in internal energy, due to elastic ion-neutral collisions, from levels between - V and
-M are not included in the right-hand side of the Boltzmann equation (2.3), and compensates
for their oversubscription in (2.5). With the assumption of R-spherical symmetry in ni, (2.3), with
the aid of (2.4)-(2.11), yields

an,(R,v,,t) +vJani(Rvit) a 8 [n(Rvit)] (aV)

at a ~ m1 a1 I 4, I ]R

=-ff [nf(R, v, )N0(v;)-ni(R, ,,,t) N(v0 )][go-(g, ,)dQ]dvo

N Y nf(Rvft)kt (R) -ni(Rvit) Z kf(R)I (2.12)
I f--M(R) f--V(R) I

as the basic equation for the solution of the phase-space densities of negative ions. The corre-
sponding equation for phase-space densities Nj' (R, El, t) of ion pairs follows directly from (2.12)

with the aid of (2.10) and of a/av - mvi a/E, at fixed R.
When thermodynamic equilibrium prevails, i.e. in the absence of the sink term (2.11), the

steady-state solution to (2.12) is a product of two independent functions, one of position R and

the other of speed v, and is such that both sides of (2.12) simultaneously vanish. The equilibrium
number density of negative ions is found (after a not too trivial exercise) to be

n0(R, vi) dvi = N- exp [ - V(R)/k T] Fo(vi) dvi (2.13a)

=N- exp[ - V(R)/kT] [4xv(A(m/2xk7)i exp ( - mv?/k7) dvi], (2.13b)

-- where F(vi) dvi is the Maxwell distribution in ion speeds vi at temperature T. The equilibrium
number density of Ri-ion pairs in the R-shell of thickness dR and with internal energy in the
interval dE, about E is, therefore, with (2.1) and (2.2),

2 1
N0(R, E) dRdEi = 4nR'dR - [Ei- V(R)]exp (-E/kT)dEj N+N-, (2.14)

of which one half move inward and one half move outward across the R-sphere, respectively.
Also the rates kit satisfy the detailed balance relation (Flannery x981 a)

No(R, E,) ki(R) = N o(R, E,) kn(R) (2.15)

as expected. The equilibrium number density of all ion pairs in all permitted internal-energy
states within the R-shell is

No(R) dR - dR No(R, E dE, = 4xR'dRexp[- V(R)/k T] N+N-. (2.16)
J Ej--V(R)
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The equilibrium number density of ion pairs bound with negative energy in the interval dE
5about E is

No(E) dE = dE N(R, E) dR? =-[C(E) exp (-E/kT) dE] N+N-, (2.17)

where RE(E) is the outermost turning point obtained from E = V(R,), and where for a pure

coulomb attraction fs/r '
C(E) = (e/R-IEI)iR2dR = nIEI , (2.18)

as obtained (Bates & Flannery 1968) for the equilibrium energy distribution of bound X+-Y - ion

pairs in the absence of the gas Z.
The right-hand side of (2.12) can be replaced by N*vI where Pi is some averaged collision

frequency. The characteristic time for substantial variation in the a/at-term in (2.12) is much

longer than the mean time v-1 between collisions so that the explicit time derivative in (2.12) is
negligible with respect to the right-hand side. Hence, by setting

N* (R, E,, t) = N* (R, EI) exp[- A (E) t], (2.19)
in (2.12) and by ignoring the small decay frequency A(EI) of level i in comparison with Vi, as in

a steady-state solution, we have

ViI 4xR2 [i-l~v) dR - {Nw* 0 (R, vi) TRdR]flj
I f(+ ,,, 4 1N'Rv) M., TV 4x, n f

* -ff [N' (R,vf)N(v)- N(R,vi)No(vo)](godJQ)dvo (2.20a)

ndR 5"+(2.20b)
N dR N* (R, E) kn(R) - N*(R, E) - iv(R) (

SLJ f= -M(R) t= -V(Th

as the basic set of coupled integro-differential equations to be solved in general for the steady-
state (R, Ei)-distributions of the ion-pair number densities N* (R, E1). This set is solved subject

U to the boundary conditions that
Ao(R, Ei), Ei > 0, R cc,

N* (R, vi) = N*(R, Ei) = NO(R, Ei), E -* oo, all accessible R, (2.21)
10, E, < - Es, R < R,.(ES),

appropriate to the continuous generation of ion pairs with infinite separation.

Note that when the R-integration in (2.20) is taken over the full range of internal separations
occupied by an ion pair of energy EI, i.e. between the turning points R, of E = V(R), where
vi (R,, Ei) vanishes, then upon assuming that the left-hand side of (2.20) vanishes everywhere in this

range we have C c
N*(E,) E (k,,) = < N*(E,) (kf1> (2.22)

-f--V f--S

where - V is the lowest bound energy level, the averaged rate is

( 11 >= f[N*(R,E,)k 1 (E,E,R)dR, Rm = min[R(E),R(Er)], (2.23)< k , i ( E , E t) > -( ) f

and the physical density of ion pairs with energy El is,

Ni* (Ei) fo N*(R, E) dR. (2.24)
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*Results (2.22)-(2.24) apply when the left-hand side of (2.20) is assumed negligible at all R
(rather than at the turning points alone), and correspond to the quasi-equilibrium result
originally introduced by Bates & Moffett (1966) and by Bates & Flannery (1968) in their treat-
ment of ion-ion recombination in the low gas-density limit, when the diffusional-drift streaming
terms balance in a Maxwell-Boltzmann quasi-equilibrium. In general, however, the full set of
basic equations (2.20) require solution subject to (2.21) as the gas density is increased.

0

2.2. Recombination coefficient afrom derived equations of continuity, momentum and flux

To develop an expression for the recombination coefficient a in terms of ion-pair number
densities N?(R, Ei), we proceed by constructing the appropriate flux or momentum equation
from the Boltzmann equation (2.3) as follows. Returning again to (R, vi)-phase space occupied
by the incoming negative ions of density n|(R, vi, t), we write the v-averaged value of some
physical quantity P(R, vi, t) as

P(R, t) = <Pi> = i n(R, vi, t) P1(R, vi, t) dv,, (2.25)n(R, t) f

where the configuration-space density is

n(R,t) =f n(R,v,t)dvi. (2.26)

On multiplying the Boltzmann equation (2.3) by P and integrating over vi, we have

U n(L K)+Vjr. n<P "i>]-nv-..-( <,,i

fPi (R, v., t) (n 1 ) d.. -f P,(R, vi, ) (Ln dv1 . (2.27)at Xvlel Li at

However, microreversibility between the direct and corresponding reverse encounters applies
*and

ffoj J PnN'[g.o(g., Vf)] dDdv, do = ffof PnAN.[gto-(gj, 0)] d~dv dvo, (2.28)

since the collision is elastic (g, = gf), and since dwidv, = dvtdvo', so that, with the aid of (2.4),

PJ n'! do1 = f . [Pf(R, o, t) - P(R, v|, t)] n, No[go(g, lV) dQ] do1 dvo. (2.29)

When P is set to unity the effect of elastic collisions is null (conservation of ions with all speeds)
and (2.27) reduces to n(R, t) f 1 i> 1 (

--- +Vt.n(Rt) (os) = -J , jtJ do1 , (2.30)

the equation of continuity in the presence of the sink S. When P is taken as the vector mvi, since
m(tff-ol) = /l(gr-gt), where #s is the ion-neutral reduced mass, we can show, after some

analysis, that .mv(Lt) do, =-# Rt,(g,)n,(R,v,,t)No(R,vot)dvdwo, 
(2.31)

where RD(g) = fgl( I - cos Vr) o(g,, ) dL (2.32)
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is the momentum-transfer rate (cm 3 s-1) which, for an ion-neutral pure polarization attraction,
is independent of g,, the relative speed I (vi - w0)1. Since the gas is, on average, considered at rest
(with respect to the centre of mass of the ion pair), (v) is zero such that

"() eidv =n(R, t) (v)[RN(R, t) n(R, t) (vi> v, (2.33)

0 where the configuration-space density of neutrals is

N(Rt) f N(R, vo, t) dvo, (2.34)

* and the term in square brackets, the frequency v of ion-neutral collisions, is only approximately
a constant for ion-neutral interactions that depart from the pure polarization form. This
frequency can also be derived from (2.5) with the result that

C C
n(R,t)(9j = N F , [n(R,Et,t)kn(R) -ni(R, E,t) kit], (2.35)

i--V f--V

where v, can be expressed in terms of El by (2.1). Hence with (2.33), (2.27) yields the momentum
equation

a[n(Rt)(u1 )] +Vs' [n(S,) <vi ti>] - eE (,t) = -n(R,'t) (v> v vi sdv, (2.36)

where the jk-element of the direct product (<vi,> tensor is vfJ)Vk), the product of cartesian
components {41),j = x, y, z) of the velocity wi.

In ion-ion recombination: (a) the recombination-sink rate is many orders of magnitude less
than the collisional rate so that the sink term in (2.36) can be neglected in comparison with
n <v1) v; (b) the characteristic time for substantial variation of n(R, t) (v,) is much longer than the
mean time v-1 between collisions so the time derivative in (2.36) is also negligible with respect to
n (v,) v. Macroscopic diffusion is characterized by a flux vector D. Van(R, t) both in equilibrium
(Maxwellian) and in non-equilibrium situations, where the diffusion (symmetric) tensor is

D = (<Piv>/V (cm 2s- 1) (2.37)

in terms of the averaged kinetic energy and collision frequency given in (2.33) or (2.35), while
macroscopic drift is characterized by a flux vector KEn(R, t) where the mobility is

K = e/mp (cmStatV-1s-). (2.38)

The ion-neutral collision frequency v is central to both quantities. In thermal equilibrium, i.e
in the low E/N region where the thermal energy dominates the drift energy, m(vi vi> = (k T) 1,
where I is the unit tensor. When departures from spatial isotropy are dominated by the electric
field E, the diffusion tensor D is diagonal with elements (DL, DT, DT), longitudinal L and trans-
verse T to the field direction -. In thermal equilibrium these elements are equal so that the
Einstein relation (De = Kk T) holds.

We now assume (c) that (vf ,l) is R-independent, as in quasi-equilibrium when the phase-space
distribution ni separates into a product nl(R) n2(v) of separate functions of R and v, as in the
Maxwell-Boltzmann distribution (2.1 3a). Under assumptions (a)-(c), (2.36) provides the current

J(R, 1) - n(R, t) (vi> = - D.Vn(R, 1) + KEn(R, t), (2.39)

bJ
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which together with the equation of continuity (2.30) implies

afRt +~ VRi D-V~n(R,t)+KEn(R,t) nc 1 )jda

* 1=-V() [aI(REi~ )-] (2.40)

in which the summation or integration over all states i between - V(R) and C is equivalent to the
* vi-integration for spherical R-symmetry. On introduction of the null collision quantity,

C C

N1REjt cktR)- ZN*IREit~kfR)~ 0, (2.41)

where -A is an arbitrary bound level, the sink term in (2.40) and given by (2.11) may be
written as

C rcn, C C C1

z a- t =NI cN(R,E,t) Z kit(R)- Z Z N*(R,Ef,t)kfI(R)(4irR2N+)-'.
i =-V(R) I=J Li-v f(R ___ i - -Vft--M J

(2.42)
On integration of (2.40) over R and with the aid of Gauss's theorem, of spherical symmetry and

of (2.2), we have, on replacing E by - (V V)/e, the app ropriate flux equation

[f ' *Rt)d]-U2[In(, n(R, t) KIV N, = -tz(R) n(R, t) N+ (2.43)

in terms of the net depletion (recombination) rate (cm-Ss-1)

ce3(R) n(R, 1) N+ = NV dR( iN (R, Ej,t) ki k1 (R) - M N*h(R E,t) kti(R)j~ (2.44)

appropriate to the local (rather than asymptotic) density n(R, t) of negative ions.
Subdivide the spectrum of internal energy into three regions: I, from C to some arbitrary bound

level - E; 11, from - E to - M; and III, from - M to - V. Regions I and 11 are interconnected
by upward and downward collisional transitions and are inaccessible from region III which is
therefore connected with I and II only through downward transitions. Introduce the inward
diffusion-drift operator

/=DV +(K/e)TVV_= D exp (- V/kT) Vexp (V/kT), (2.45)
such that the inward currentj (cm- 2s-1) is fn(R, t), and the flux operator -9 which is such that
the flux across the spheres each of radius R and surface area Y' is

Q /[47R2N+n(R,t)] fVN+J. dS 4nR2N+j(R, t). (2.46)

Einstein's relation De = Kk Thas been used in (2.45) since the ions are in quasi-equilibrium with
the field.

The contribution from region I to the left-hand side of (2.43) is therefore

N4f4' ( R, t) dR]+ 9N*(R, t) = Nf dR (N" k 1 - Nk 1 ) (27)

on making use of the null collision relation (2.41) with - A taken as - E, and where explicit
dependences in the right-hand side are omitted. The right-hand side of (2.47 a) is constant for
R >, RE, the outermost turning point associated with -E, i.e. V(R,/) = - E. For region II,

N(tdR+2N*(R, 1) = dR N kit - N*k, (2.47 b)

-~ ~ ~ ~~ ~ ~ ~~~~~ .. ......-- - - - - - - - - - - - - - - - - - .. .



462 M. R. FLANNERY

pwhile for region III,

r fNI' (R )dR]+.9N (R t) =-Nf dR -M N k. (2 .4 7c)

For all three regions the number densities M*(R, EI, t) on the right-hand side of (2.47) are
solutions of the time-independent set (2.20) of coupled integro-differential equations. As pre-

Um viously noted, the left-hand side of (2.20) vanishes as R tends to the turning points R(Ei) asso-
ciated with bounded motion for a state of (negative) energy Ei. For the spectrum of bound levels
in region II, it follows that the left-hand side of (2.20) does not depart appreciably from zero,
particularly for levels - E and - M sufficiently close and deep, so that the radial extent of the
associated bound orbits is minimal. Hence for region II, we have

c CNI*(R, EI, t)  kit (R )  N* N(R, Er, t) knI(R); ->E > -t, (2.48)

f--V f=-M

as for quasi-equilibrium at each R. Thus the right-hand side of (2.47 b) vanishes in this approxi-
mation, in contrast to that for region I which includes the unbounded continuum and highly
excited vibrational levels with large amplitudes of radial motion. Since all ion pairs with energy
below - EM have recombined and are irretrievably lost to the recombination in progress,
Ni (R, (E_, - E-v)) vanishes, so that (2.48) implies, in the above approximation, that

C N(* N(R, EI, t) kn (R) z, 0, E M > Ei > E_v, (2.49)
f -- M

Vwhich makes the right-hand side of (2.47c) vanish. This effectively zero rate is not difficult to
establish since the collision rates kit are relatively large only between neighbouring levels, which
in this case are in a range surrounding - M at which the number densities N* of active ion pairs
have already become much reduced from their equilibrium values (2.14) by the recombination
process. Hence upon addition of 2.47 (a)-(c) over the three regions, the overall number density

*N* (R, t) satisfies

.. i N*(R,t dR] - N+fyJdS=Nf dRZ ( k fi -M N* k)

a3(R) n(R, t) N +. (2.50)

Steady-state conditions can be maintained by continuous generation of ion pairs with infinite
separation at an inward flux rate

F,& -N+| O J"dS

so that
-d(N±)/dt+ F. a3(Rg, t)n(Rw) N + -N N-, (2.51)

where R_ is the maximum radius associated with collisional transitions across the energy level
- E, i.e. V(Rv) = - E. Hence the steady-state recombination coefficient is,

= = a 3(RE) n(RE)/N-(N\RE CX -Ea [N* (R, I .- k t() Z aN *(R ' 
- -E()

NN dR~ - (R E1)E f--V -f--M Nt(Etk(RJ (2.52)

where the number densities NI(R, E) are determined by appropriate solution of (2.20) subject
to the boundary conditions (2.21). The solutions will, in general, depend on gas density N, and c

__-_/ ~ 'ha na m md 
'a

"L h' i mm ~ ~ a ~ ma -- . . . .. 1
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i s then a general function of N. We note that (2.51) equates the steady-state inward flux aN-or
* 41R 2 fjn with a3(RE:) n(RE) which is the net rate of reaction within RE. Thus (2.51) and (2.52)

manifest quite clearly a partially absorbing boundary condition at RE around which the ion
density is continuous.

In summary we have obtained in this section the necessary equation (2.20) for solution of
N' (R, E, t), and the appropriate equation (2.50) or equivalent expression (2.52) for the recombi-
nation coefficient a from the appropriate flux equation (2.43), a combination of a derived

* momentum equation (2.36) and the equation of continuity (2.30).

2.3. Steady-state solution

As R -> RE and beyond, N+F!(R), the right-hand side of the flux (2.50) becomes constant.
Let the ion-density N*(R, t) decay as N*(R) exp (-At) so that (2.50) reduces, with the aid of

(2.51), to

N+FC(RE) = AN+ 4nR2n-(R) dR + 4tR2N +D exp (- V/k T)- [n-(R, t) exp (V/k T)]

= cz(R) n-(R) N+ = aN+N-, R >, RE. (2.53)

where n-(R) denotes the density of negative ions.
The steady-state solution of (2.50) involves neglect in (2.53) of the A-term which depends on

n-(R) within RE. This neglect implies

fRL 4R2 n- (R) dR ,< 1 (2.54a)

since A - aN-, such that N- < (2.54b)

i.e. few unreacted ions must be present in the 'recombination volume' as measured by the
RE-sphere in order that the frequency decay constant A may be neglected. Given RE - e2/kT
for example, appropriate to a bound level at k T below the dissociation limit, N ± ,< 10t cm- 3

for validity, while smaller RE (as at high N) will extend the limits to higher N±. Integration of
* (2.53) under the steady-state condition then yields

N--n-(R) exp (V/kTt,) = [Fc(RE)/a] P(R), R > RE, (2.55)

where ah = 4nDR,, the high density Langevin limit (1.2);

P(R) = Ref exp (V/kTnf) dR/RI, (2.56)

is an important function related to the probability (§2.4) that the R-ion pair expands by
diffusional drift to infinite separation; and

= el/(De/K) =- e/kTetr, (2.57)

is the natural unit of length. At low E/N when the thermal energy dominates the drift energy,
thermal equilibrium at temperature T is obtained, and the Einstein relation De = KkT or,

equivalently, DR, = Ke, holds such that Tm in (2.55) and (2.56) is simply T. The steady-state
negative-ion density outside RE can, with the aid of (2.53) be written in two equivalent forms:

n- (R) N- exp-V/kT -[ a ]P(R) N- exp [ - V(R)/kT] [h/P(R)] R > R,
nall Thz(R)exp[ -V(R)/kT7+oah/P(R)'

(2.58a)

33 Vol. 304. A
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in which Teo is denoted here by T for brevity;

n-(R) = N-exp(- V/k T)exp [el fa3(R) R-2dR]. (2.58b)

Hence the overall recombination coefficient a from (2.53) is

a x =3(RE) n-(RE)N = (RE) exp[ - V(RE)/kT] [_h/P(RE)] (2.59)
a3 c(RE) exp [ - V(RE:)/kT] + ahP(RE) = const.

*D in terms ofach which is known, and of, 3(RE) which is yet to be determined. Since a3 is internally
dependent on the phase densities, N* (R, E,), through (2.44), we note that a, with this required
knowledge of N*, may, of course, be determined directly from (2.52) rather than from (2.59).
However, not only does (2.59) promote further physical and basic understanding of recombi-
nation, but it is also very effective when alternative means are used to deduce a3(RE), as, for
example, in § 4.2. Steady-state conditions are also achieved at R > RE effectively instantaneously
for low N, and after time lapse t > R.,/D for high N (see § 2.5), and are independent of condition
(2.54 b).

Since ah - N -1 , from (2.58), at low gas densities N,

n-(R) z N-exp[- V(R)/kT], R > RE, (2.60)

the Boltzmann distribution, such that (2.59) tends at low N to

al. = a 3 (RE) expj[- V(RE) /k T] a an(RE), (2.61)

which is from (2.53) the recombination coefficient that would pertain provided the Boltzmann
ion-distribution were maintained (as at low N), i.e. arn in the absence of net ionic transport (as in
a Boltzmann distribution) measures the rate of reaction within RE. Thus, (2.59) reads,

a = arnatr/(arn + 'tr), (2.62)

where the recombination coefficient ahl at high gas densities is,

* 2hl = 4,D/ Jexp (KV/De)R- 2 dR = [cah/P(RE)] ar (2.63)

the rate of ion transport by diffusional-drift. Hence, the ion number density (2.58) is

n-(R) = N-exp(- V/kT) I tP(R) R > R E - (2.64)

At high N, therefore, n-(R) from (2.64) departs significantly from the Boltzmann distribution
at R z RE, where the reactivity of the ion pairs is strong; and at low N, n- is approximately
Boltzmann where the reactivity is weak. As Nis increased, the reactivity of the ion pairs (resulting
from 'effective' collisions in the increasingly dense gas) becomes so great compared with the rates
of ionic transport that continued reaction causes significant depletion in the ionic concentration
in a localized region, and the ion R-distribution from (2.64) is far from Boltzmann. This feature
is, in general, responsible for the failure ofthe use ofequilibrium kinetics (partition functions, etc.)
or of equilibrium concentrations of reactants for rates of chemical reactions in a dense medium,
in contrast to that evident for low density gases (see (2.60)). It is also this feature that invalidates
the ab initio use of the Debye-HUckel interaction, appropriate only for equilibrium situations at
asymptotic R, so as to acknowledge possible plasma sheathing effects when the ion densities N±
are raised from 10' cm -3 to about 1014 cm- 3. Use of an interaction, self-consistent with the ionic

distribution and recombination sink, is the correct procedure (see § 4).
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We note that a 3 and hence al, contain, in general, a complicated dependence on N through

3(2.44) and (2.20). The overall recombination rate (2.59) is, therefore, controlled by the rate-

limiting step of the rate of ionic transport. as measured by atr, and of the rate of ion-ion reaction

(by effective three-body collisions), as measured by Mrn. Thus, the full theoretical development

of the relation (2.62) has provided basic insight into a relation previously suspected (Bates &

Flannery 1969), of one that is useful when the rate arn of reaction can be deduced without explicit

p knowledge of the phase densities N* (R, Ej), as in § 4.2.

The physical significance of P(R) in (2.63) and in (2.64) where it provides the R-variation of

the departure ofn-(R) from pure Boltzmann is made apparent in the following subsection; further

study is also made of the separation of recombination into its transport-rate and reaction-rate

components.

2.4. Partially absorbing and fully absorbing sinks: transport and reaction rates

The time-dependent continuity equation (2.40) is

an-(R, t) c [an (R, 1, t) (2.65)
+ = -V(R) at S

where the current vector (number of ions per second crossing unit area of an R-sphere)

J = -D[Vn-(R, t) +n-(R, t) V(VlkT)] -Dexp(- V/kT) (d[n-exp (V/k T)]/dR} R, (2.66)

arises from diffusional drift of the ions with relative diffusion coefficient D in the gas Z under an
external spherically symmetric field of potential V(R). The sink term (2.11) has been shown to be,

a,(R,t)n(R,t) E, t) ,P)- Z N(R,E,,t)k(R)

_f- f- -M

(2.67)

which equates the frequency of production of R-ion pairs by diffusional drift to the frequency of

ion reaction within R.

* Although the phase-space densities ni(R, Ei, t) are in principle solutions of the appropriate

time-dependent Boltzmann equation (2.12), important progress can be achieved upon assump-

tion of either an instantaneous reactive sink or a partially absorbing sink that operates for ion

pairs with internal separations R < S. Also, the physical meaning ofPin (2.63) becomes apparent.

Thus (2.65) is equivalent, with J -J, to,
an- 1 (Rj) = 0, (2.68)

solved subject to prescribed boundary conditions that characterize the sink under different gas
densities.

The steady-state solutions at R, and R2 therefore satisfy

In-(R) exp (V/kT)]jtR = (F/4nD) [P(R) -P(Rg)], (2.69)

where P(R) is given by (2.56) and F is the steady-state constant inward flux 4nR'j. For ion pairs

that react (neutralize) instantaneously within the sink S, as at high N,

n-(R,t) = 0, R <. S, (2.70)

n-(R, t) = N-, R --. oo(

such that (2.68) yields,

er ai = F/N- = 4D/fexp(V/kT)dR/R2, (2.71)

Ifs.
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the transport rate, which at high N is equivalent to the recombination rate. This reduces to

ad = 4DS (2.72)

when the interaction V between the ions is neglected, and to

a = 4n!DR,/[I - exp ( -1R/S)], (2.73)

for pure coulomb attractionU
V/kT= -ZtZ, e/Rk T -(RI/R) (2.74)

between ions of charge Zle and -Zze.
For recombination in a gas, (2.72) and (2.73) are the diffusion and diffusional-drift results of

Harper (1932) and of Bates (1975) respectively. For coagulation of colloid suspensions in a liquid
of permittivity e, analogous expressions (with Re = ZZ2e2/ek T) have been obtained by Smolu-
chowski (1917) and by Debye (1942). For this reason the full time-dependent equation (2.68)
for a spherical field is frequently referenced as the Debye-Smoluchowski equation, derived
originally by Smoluchowski (i916, 1917) from a stochastic random-walk picture of the process.
The interesting feature is that it is a natural consequence of the basic microscopic treatment,
which therefore provides its full generalization (2.65) and (2.67) to an arbitrary compressible
sink based on detailed collisional kinetics which in turn depend on the phase-space densities
n1(R, E, t). However, with this knowledge of ni, the steady-state a can be obtained directly from
(2.52), rather than from the solution of (2.65).

It is interesting to note from comparison of (2.72) and (2.73) that proper account of the inter-U action field is acknowledged simply by replacing S in the field-free case (2.72) by R,/P(S); and
that (2.72) alone is incorrect if realistic S oc (R/N)i (see § 4.2) are adopted. As Nis increased, it is
obvious that the three- body reaction zone must decrease and cannot be arbitrarily held at R, to
ensure identity between (2.72) and the correct limit (2.73). This note helps resolve previous
confusion that existed (see Flannery 1976, p. 423) between treatments based either on pure
diffusion (Harper 1932) or on pure mobility (Langevin 1903). Neither treatment is rigorously
correct: mobility and diffusion effects must be coupled as in (2.71), although only for pure
Coulomb attraction any error in Langevin's derivation disappears in the high-N limit unlike
that involved with (2.72). This coupling also ensures thermodynamic equilibrium between effects
of mobility and diffusion and is very important to the general determination of the phase-space
densities (§ 5.2) at intermediate and high N.

A correlation can be established between two problems differing only in the generation
boundary condition, i.e. between the recombination rate a for the homogeneous case where the
process is driven by the boundary condition (2.70) for n(R - oc) and the probability .9c(Ro, R,.,)
for the diffusional-drift contraction of ions generated at R0. Between R0 and an instantaneous

-sink at R): < Ro, (2.69) then yields

n-fR) exp (V/kT) = (F/41rD) [P(Rk) -P(R)], R,, < R < R,, (2.75)

where P, is the net inward flux at R. In the presence of a sink at infinity,

n-(R) exp(I'/kT) = (Fe/4nD) P(R), R, < R < oc, (2.76)
where F,. is the net outward flux at R. The probability that an isolated R0-ion pair contracts by
diffusional-drift is

•A,(R0 , R,:) = F,.(Ro)/[F;.(Ro) + Fc(Ro)] = P(R,)/P(R), (2.77a)
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where the subscript (s) denotes that this .9e pertains only to the case of spontaneous reaction. The
5 probability that it expands (by diffusion against the force of attraction enhanced by the presence

of the sink) to infinite internal separation is

.,)(Ro, RE) = Fe(Ro)/[F,(Ro) + F (Ro)] = I - P(RO)/P(RE). (2.78a)

Thus, in the homogeneous case the negative ion density (2.58) can be rewritten as
N- o

.n-(R) = N- exp(- Vk T) [t - (,/tr) J"s)(R, RE)I - N-exp(- V/kT) .'(R,RE), (2.79a)

where j,) is interpreted as the probability of diffusional escape of an R-ion to infinity in the
presence of an instantaneous sink at RE, and yields the fractional departure of n-(R) from pure
Boltzmann at high N.

Hence the recombination rate at high N is the transport rate
2tr = 4nREDexp ( - V/kT) [0. )(R,RE)/ R]RE = RE/P(RE), (2.80a)

where 01h is the Langevin rate 4DR, and !A(.) is the probability of contraction from R to RE:
against diffusional escape. Thus, the physical origin of P in the transport rate (2.63), which is
identical to the recombination rate at high N, is now apparent. For pure coulomb attraction at
high N when the sink radius RE < R,, the escape and recombination probabilities reduce to

,.('.)(R) - exp(- R/R), (2.81 a)

and ,'()(R) -,, 1-exp (-RJR) (2.81 b)

in agreement with Onsager (1938), and n-(R) ; N-exp ( - V/kT) exp (-R,/R).
Extension of the rate (2.73), valid only for instantaneous reaction after ion approach by

mobility-diffusion, to lower gas densities N can be achieved by solving (2.68) subject to the
more accurate boundary condition

j(R,t) = F3n-(R,t), R = S, (2.82)

where rF(R) is the speed of reaction of R-ion pairs. This (radiation or partial absorption) con-
dition acknowledges the finite rate of reaction (by three-body effective collisions) after ion
approach and implies a probability for subsequent diffusional-drift expansion of the unreacted ion

. pairs; if r 3 is infinitely fast as at high N then (2.70) is recovered. The diffusion-drift equation
(2.68) governs ion transport up to S from which the ion departs inward with an effective finite
speed F3(S) towards certain recombination within S, the radius that characterized the transition
from transport (i.e. ineffective collisions) alone to reaction (i.e. effective collisions). Since

F = 4rrR2j = (4,rR'r.) n-(R, t) = a (t) N-, (2.83)

then, provided Boltzmann equilibrium conditions for the ions are maintained, the recombination
coefficient (F/N-) would be

crfl = (4nirr 3) exp(- V/kT) a 3(R) exp(- V/kT), (2.84)

where we are reminded of the role of the finite rate of three-body energy-change collision (the
reaction rate) by attaching 3 as a subscript to both a and r.

Hence, (2.82) is simply
. -(S)n(St) = 4xS'j(St) = aN-, (2.85)

which equates thefinite collisional recombination rate within S to the flux of production of S-ion
pairs. The basis of this radiation condition (2.82) or (2.85) has already been established
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theoretically by (2.52). Thus the steady-state solution of (2.68) for the ion density subject to3(2.82) or (2.85) is

n-(R,t-+ oo) = N-exp(- V/kT) I -fap--R) (2.86)

which yields the following steady-state recombination coefficient:

a'(t -) 00) = a3(S) exp (- V(S)/kT) atr = Zrn'tr (2.87a)a3(S) exp (- V(S)/k T) + ,-r ar tr +2
in agreement with the results (2.64) and (2.58) of the previous subsection.

For this case of finite reaction, a relation between a for the homogeneous case (with source only
at infinity), and the contraction and escape probabilities :.e(R, RE) for the case where ion-
pairs are continuously generated with internal separation R, can be obtained, as before, from
(2.69) to yield

and ,Pc(R, RE:) [a-(R) - (a//ar,) N-exp(- V/kT)]P(R) ,-, P(R)
n-(R) P(RE) - (/arn) N-exp (- V/kT)P(R) - P(RE) (2.77b)

(R, RE) (/)P(RE) - P(R) -. P(R)P(RE) - arn) N-exp,( - V/k T)P(R)In-(R)- P(R- (2.78b)

The number density of ion pairs generated with internal separations in the interval dR about
R is 4xRIn-(R) N+ dR.

When n- is given by (2.86) with S = RK then
[J :Y c(R ,R . = , P (R )

CRP(REr) = -- (R,Rfl, (2.77c)

so that n-(R) = N-exp (- V/kT) ,?O(R,RE) (2.79b)
and a = 4xR2R D exp ( - V/k T) [a& c/R]RE, (2.80b)

which are the direct generalizations of (2.79a) and (2.80a) to finite reaction. Thus .Pe, in general,
may be interpreted as the fractional departure of the ion density from Boltzmann equilibrium
and is the solution of V {exp (- V/k T) VY@} = 0 subject to ve(o) - land D(a e/R) = I' Joe
at RE.. Hence (2.85) and (2.87a) may be rewritten as

a = 9,a t, = (R,, RE)a ,. (2.87b)
where the probability of recombination

r = ,t + atr) = .C(RE, RE)-rn/ltr, arn 4 attr, (2.77 d)'J~ :atn/('r + tr): cRFRt:)-' arn > Ottr,

is simply the contraction probability for ion pairs generated with internal separations equal to
the sink radius, i.e. .. r 4 I is the probability of intrapair (geminate) recombination.

Note that the boundary condition (2.85) is essentially identical with the exact condition (2.52)
based on detailed kinetics when RE is identified with S. This boundary condition can be suitably
incorporated by rewriting the time-dependent Debye-Smoluchowski equation (2.68) as

(n- r3 n-8(R -S) = a3 n-8(R - S), (2.88a)

which uniquely identifies the strength of the sink as the speed of three-body recombination; for
F3 large compared with the rate of ionic transport, the reactivity of the sink is effectively instan-
taneous, and a is given then by (2.73); while (2.87) pertains when fr is comparable with the ion
transport rate. No deactivating reaction implies zero Fa, and hence zero rate of recombination.
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The number density A of all ion pairs AB with internal separation R > S then decays at

a rate
d- = 4xR2N~n(R, t) dR [4xS~lF3n-(S, t) -{IK -4irSj(S-et)}] N=7R2~ -- x~( ,1

t= N - F,, (2.88 b)

where F, is the rate (s-1) of generation of negative ions at infinity, and a is the tinie-dependent

rate (cm 3 s -1) of recombination appropriate to asymptotic ion densities N±. If the ion current

approaching S is absorbed by reaction within S, then lim,_j(S-e, t) - 0. In steady state, tile

rate 4xR 2j(R,t) from (2.88a) is constant for R > S+6 and equals both the production and

absorption rates V, and 4irS 2 
3n-, respectively, in (2.88b).

In conclusion, this subsection has emphasized the decomposition of the recombination rate a

into its reaction and transport components, arn and atr, respectively, which act in series so that

a, = .Patr in terms of the recombination probability Yr of (2.77d), and is determined by the

rate limiting step 7,,, or atr in the limit of low N and high N respectively. Also the relation has

been developed between a and Y, for the homogeneous case with the escape probability Y'e of

ions generated within the medium. Steady-state recombination can therefore be regarded as

being maintained either by a continuous source in ions at infinity or by a source that generates

within the medium R-ion pairs with density (2.86). In the latter picture, the recombination

probability .*0 is simply the probability Y, for contraction of those geminate RE ion pairs so

generated. Also proper contact has been established between the microscopic treatment and the

generalized Debye-Smoluchowski equation (2.88a) which blends the macroscopic phenomena

I of diffusional-drift (which is characterized by the departure from pure classical ion-ion

trajectories to a zigzag statistical pattern) and reaction between individual ion pairs. The sink in
(2.88 a) is compressible in the sense that its radius S is determined by collisional kinetics, which

depends on the gas density N, as explicitly shown in § 4.2 where S is shown to contract from ca. R,
to ca. (RA )i as N is increased.

I
2.5. Analytical solution of the time-dependent generalized Debye-Smoluchowski equation

Equation (2.65) is frequently called by those interested in coagulation in colloid solutions the
Debye-Smoluchowski equation after the original authors who found its steady-state solution for
the field-free case ( I' = 0) and a coulomb interaction respectively, appropriate to an instantaneous

sink (.0,-- I or o - ) X. While an exact time-dependent solution can be immediately obtained

in the field-free case, there has as yet been no exact solution obtained for a general interaction V,
although a large body of literature exists on various analytical approximations for the coulomb
interaction. These arc based on Green functions, perturbation expansions, 'prescribed' diffusion,

(ct. (Mozimider 1968, Abell & Mozumder 1972, Abell et al. 1972, Magee & Tayler 1972), and
on the Mathie'i equation (Hong & Noolandi 1978) via the resemblance between (2.65) for the

coulomb interaction and the Schr6dinger equation with an R-t-potential. It may also, ofcourse,
be solved by numerical procedures (Freed & Pedersen 1976).

The generalized equation (2.88a) is of basic significance not only to ion-ion and atom-atom
recombination in a gas and in dilute ionic solutions, but also to medical radiology and to diffusion-

and field-controlled reactions in metabolizing systems (as enzyme-substrate reactions in a cell
(Reid 1952)). It is of general importance in theoretical physics In this section, we present an
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approximate yet accurate analytical time-dependent solution, -and associated recombination

rates, of the equation On (R, t) I (
at =W T- (R') (2.89a)

with a general diffusional-drift current

j(R, t) = D exp ( - V/k T) 0[n(R, t) exp (V/k T)]/IR. (2.89b)

* Our basic equation (2.50) derived from microscopic principles is, in effect, equivalent to (2.89)
solved subject to certain boundary conditions.

The boundary conditions are

n(R - oo, t) = N-exp(- V/k T), (2.90)

the Boltzmann distribution, for continuous generation of ions at infinity, and, either
n (R,t) = 0, R < S, (2.91 a)

for an instantaneous sink within a sphere of radius S, or

F3 n(S, t) =j(S, t), (2.91 b)

for a partially absorbing sink where Fs is, as before, the speed of (three-body) reaction for ion
pairs brought to internal separation S by ion transport such that

ax3= 4xS'F 3
•  (2.91 c)

The initial (I = 0) distribution

n(R,t =0) = N-exp(- V/kT), (2.92)

is assumed Boltzmann. Two examples follow below.

(a) Field-free case, V f 0. Although the exact diffusion-controlled solution (V = 0) is known
(Reid 1952), being analogous to heat conduction through a sink, we include it here for use in the
case of general V(R). Introduce the dimensionless quantities

r = RIS- 1, 7 = Dt/S2 , (2.93)

and let n'(R,t) = (R/S) n(R,t), (2.94)

such that (2.89) with V = 0 reduces to

-n'(r, 
2) et = 02n ' (r, r)/ ar. (2.95)

This equation can be solved directly by the method of Laplace transformation to give

n(-)(R, t) = N-{1 - (SIR) erfc [(R - S)/2(Dt)i]), (2.96)

appropriate to diffusion (d) controlled transport and spontaneous (s) reaction for an initial
random distribution N-, where the error function (or probability integral)

erfc X = exp (- x') dX. (2.97)

The rate of recombination for this case (V - 0) is

-.g)(t) 4xSj(S,t)/N - = ad[I +S/(xDt)iI, (2.98a)

where ad. 4SD (2.98b)
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is the steady-state (t -) a) solution (2.72) obtained by Smoluchowski (1917) for coagulation in

colloid solutions and by Harper (1932) for ion-ion recombination in a gas. The rate of decrease
in the number XR of diffusing species outside S can be evaluated directly from,

SN-d 4nSRerfc[(R-S)/2(Dt)i]dR = aN (2.99)
dt it s

where the derived ot> is identical with (2.98), as expected from (2.89a). Under the condition

(2.91 b) for finite (f) reaction and diffusive transport,

ng) (R,t) = N{I + (a/ad) (SIR) [exp(2QX) expX2erfc (y+) - erfcQ]}, (2.100)

where the time dependence is contained in

X(1) = (1 +a 3 /ad) (Dt)t/S- ( 3/a) (Dt)t/S, (2.101)

and in Q(t) = (R-S)/2(Dt)i, (2.102)

which vanishes at the sink, and a = a 3 ad/(a 3 +Mad) (2.103)

in terms of (2.91 c) and (2.99). When the rate a3 of reaction is much larger than the rate ad of ion

transport, X - oo, a = ad, the limiting rate, and (2.96) is recovered from (2.100). The time-
dependent recombination rate from the radiation condition (2.91 b) with (2.100) is

2T (t) = a3ng'(S, t)/N- = a[1 + (a3/xd) exp X2 erfc X], (2.104)

and a is therefore the steady-state (I - oo) solution (since erfc -- 0). The rate (2.104) also follows
directly from 4tS2D(dnd/dR),.3 as expectcd from (2.91 b). At t 0 the recombination rate a)(0)
is simply the rate a3 of reaction, as expected, since an initial ion distribution N- has been assumed.

Note that (2.98) for the instantaneous sink yields an infinite recombination rate, at I = 0, again
as expected from the assumed infinite rate of reaction.

(b) Generalfield V: The following analytical solution is based on the novel transformation
Pl from R to the variable

P = exp[V(R)/kT] -1; -= (A)2exp(V/kT), (2.105)

a transformation not without its physical significance. It is related to the probability , in
(2.77a) that an R0-ion pair will further contract by diffusion under V, in the presence of an
instantaneous sink at S (or else to the diffusional expansion against V to infinite separation), i.e.
(2.77a) is rewritten with the aid of (2.105) as

.4,(RoS) = R(S)/R(Ro) = /R0. (2.106)

Let nv(R, t) = n(R, t) exp ( V/k T), (2.107)

such that (2.89) becomes -n" (A, 2 -n;- t) (2.108)

where the transformed diffusion coefficient (cm 2S - 1) is

= D(dR/dR). (2.109)
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The form of this equation is, in the transformed A-representation, identical with that for the
field-free case in the original R-representation. Accordingly, introduce scaled quantities (2.93) and

= (A/ )-I, f-= t/Sl', n' (A/S)nv(A,t) (2.110)

such that (2.108) reduces to

=a Tdr ) _W(,i _r Trn f jdV 'd r (2.111a)

which suggests the following two procedures for solution. Assume (di/dr) remains constant such
that introduction off of (2.110) yields

( )= 'n'(,) (2.11 b)

which is the field-free diffusion equation in V, f-space. Alternatively, since

(d-r 'd'r = 2R ( - 2 + VlkT) (2.112)

in the right-hand side of(2.11 a) vanishes to O(R - ) for the Coulomb interaction and is negligible

for R3 i>/in = S(e'/kT)2,
On'(r, r) = a'n'(r, r) (2.11 c)
&r ar"

the one-dimensional diffusion equation in r, r-space.
The full solution of (2.89) appropriate to spontaneous reaction (2.91 a) is therefore, after some

a n alysis, o f (2 . 11 1 b),[ 
( A -S R .ayion()(Rt) = N-exp- V/k 1 - erf[ ) (2.113)

The recombination rate then reduces to

a('(t) = 4ixSj(S,t)/N- = at, I V(S)/k T] (2.114)

where the steady-state transport rate

atr = 4SD = 4irDR/P(S) -hi (2.115)

with P(S) = R,/s = Ref exp(V/kT) T (2.116)

in terms of the natural length e'/k T as in (2.56). Under the condition of equilibrium with the
field when the Einstein relation written as DR, = Ke holds, the steady-state solution is, for a
coulombic attraction a) = 4nKe/[I - exp ( -R,/S)], (2.117)

as previously obtained by Bates (1975) via the steady-state analysis of an instantaneous sink,
leading to (2.73). The present paper represents the first time, to the author's knowledge, that the
transient solutions (2.113) and (2.114) for instantaneous reaction in the presence of a general
field have been obtained. Since constant (dA/dR) is assumed in (2.111 b), (R- .9) (dR/dk) can
be replaced by R-S which yields a result also obtained via (2.111 c).

The boundary condition (2.91 b) for finite reaction under a field is

l'3(S) n-(S, 1) = Dexp [-V(S)/k T] ({[n(R, 1) exp(- Vlk T)]I/(R, (2.118)
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which for (2.1116) and (2.111 c) transforms as

and

L - d n'(o) - (E) [ exp V(S)/kT] n'(O,t) (2.119b)

- respectively, where

a,-,= 4XS 2r3 exp ( - V(S)IkT), a = (arncat,)/(arn +atr) (2.120)

are the reaction and recombination rates, as before.
Hence, after exercising due care, we obtain for a general interaction the full time-dependent

solution obtained from Laplace transformation of (2.111 b) subject to boundary conditions (2.90)
"* and (2.119a), and to the Boltzmann initial condition (2.92):

n(R, t) = N-exp (- V/kT) ( + (Z /Ztr) (3 /A) [exp (2.2,) exp, 2 erfc ( + D) - erfc.D]}, (2.121a)

where r.(t) = (1 + rn/at,) (bt)/ , (2.1216)

- s'() = (R-S')/2(D)i, (2.121 c)

in terms of (2.105) and (2.109). Solution of (2.111 c) subject to (2.119b) also yields (2.121 a) but
with b evaluated at S, and with b replaced by Q2 of (2.102), which are essentially equivalent
since constant dA/dR is basic to both methods.

The full time-dependent recombination rate now follows from (2.121 a) as

a(t) = a3n-(S, )/N- = a[1 + (arn/atr) exp'slerfcs], (2.122a)

* . where D(R = S)in (2 .121c) vanishes,,j in (2.121 b) is, with the aidof(2.105), (2.109) and (2.121),

-)---exp [V(S)/kT) [Sfexp(V/kT)R-1dR], (2.122b)

at S. For the field-free case (V = 0), (2.121) and (2.122) reduce to the diffusion-controlled
results (2.100) and (2.104), respectively. Expressions (2.120) and (2.122) are the analytical time-
dependent densities and rates obtained from (2.89) for an arbitrary spherical field V(R) for an
initial Boltzmann distribution, and are accurate where (dV/dr) can be assumed constant in
(2 .111 a).

As t increases from zero,

expX 'erfc X -* I - (2 /4x) X+X'- "(4/3 Vr) 3 +... (2.123)
such that

S(t - 0)f= ara l 2 arf (Dt) exp (V/kT) R-'dR]-') (2.124)

decreases initially from the reaction rate a. As t oo,

expX2erfcX-- (I/X VI) (I - l/2X + 3/4X4 ...), (2.125)

such that the long-time dependence is

-(t--> o) a I+.I Sexp[V(S)/kT] [s exp (V T) R-dR]). (2.126)
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The transient rates (2.124) and (2.126) for short and long intervals of time are best observed at
high gas densities when arn > ott ;. a respectively. The full transient densities (2.121) and

rates (2.122) are of basic significance to all diffusion-drift phenomena in gases or dilute solutions,
such as ion-ion, ion-atom and atom-atom recombination in dense gases, or coagulation of
colloids in ionic solutions.

30T
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FIURE 1. Explicit time dependence of recombination rate a($) at various gas densities N (in multiples of the
Loschmidts number NL =2.69x 101s cm- s at s.t.p.). Characteristic times (SI/D) for diffusion are (16, 11, 8,
5, 3) x 10-12 s for N/NL = 1, 2, 3, 5, 10 respectively.

The full time dependence in (2.122a) for a is contained in (2.122b) for Xs which, for a pure

coulomb attraction, varies as

,(') = (1 + trn/Otr) ?(R,/S) [exp (Re/S) - 1]-', (2.127)

where the scaled time is r = t/(S2/D) (2.128)

where S2 /D is the approximate time required for an ion to diffuse from the boundary to the centre

of the sink.

.With the aid of a simple expression, (4.12 a), and associated quantities, derived in § 4.2 for the
reaction rate Irn, and the exact expression (2.63) or (2.71) for the transport rate, the full time
dependence of the recombination rate (2. 122a) can be explored. Figure I illustrates the variation
of a(t) with I for several values (1, 2, 3, 5, and 10) of the gas density N (in multiples ofNL - 2.69
x 1019cm- 3 , the number density at s.t.p.). These rates are appropriate to a fictitious (but repre-

sentative) case of equal masses (M = 16 a.m.u.) of the ionic species with mobility 2 cm 2 V -t s-t

in an equal-mass gas and %ith 81 in (4.17) taken as 0.6 (Flannery 1978). Figure 1 exposes features
of basic significance to the physics of recombination.

Since the initial ion distribution is assumed to be in Boltzmann equilibrium, the initial rate of
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recombination a(t = 0) is simply the reaction rate arn, in accord with (2.124). The ions then begin

Ntheir transport and replace the reacted ions within a time S2/D. Since the recombination is
determined by the rate-limiting step of reaction and transport, its variation with time is best
observed at high gas densities N where arn > atr such that a decreases from arn to atr, the steady-
state limit at t > S2/D. Variation of a with t for N ; I ONL, for example, reflects the change in a
from reaction controlled transport. The reaction rate at high N ( > 5NL) is so large because the
radial extent S of the sink becomes so contracted that the Boltzmann distribution of ions at its
boundary is locally very large and offsets the inherent reduction in cross section. For N ; N1,

and lower, the transport is always faster than the reaction such that the reaction rate limits the
rate of recombination at all times, and a straight-line dependence is observed as in figure I. The
steady-state limit is, of course, independent of any initial condition adopted.

Measurement of the variation of a with t at high N(> NL) would, therefore provide valuable
information about the physics intrinsic to recombination, i.e. of the transport component at
t > S2/D and, more significantly, of the reaction component at high densities when t < S2/D.

Such experiments are feasible with modern techniques such as laser spectroscopy. In figure 1 are
indicated relevant time-scales. The radii S of the sinks are compressible (§ 4.2) as N is raised,
and the unit of time (S2/D) varies from 1.6 x 10- 11s at a gas pressure of about I atm to 3 x 10-12s
at ca. 10 atm. The laser can be tuned to some known molecular rotational or vibrational transition
since electronic transitions are precluded because of the time-scale. The ion densities can then be
determined by fluorescence.

Figure 1 is, therefore, a striking illustration of the transition in recombination from reaction
alone to the limiting step of reaction or transport. Verification is feasible, not only by laboratory
experiment but also by Monte-Carlo computer experiments such as those of Bates (I98oc) and of
Bardsley & Wadehra (i98o), suitably generalized to include explicit time dependence.

The basic equation (2.89) can be written to incorporate both the condition (2.91 b) for a
finite rate arn of reaction and the possibility of a scavenger reaction proceeding in parallel at a
rate yn, by

- -V j -yn = F3rn(R - S). (2.129)

By Laplace transformation, we can show that the time-dependent solutions are given by

n exp ( - yt) and a exp ( - y,), with n and a given by (2.121 a) and (2.122 a), respectively.
Finally, transient solutions of (2.129) appropriate to other initial conditions are important,

for example where intense ionization is deposited into or produced within a localized system
either by a high energy beam of particles or by radiation such that many ions may diffuse out of
the localized system before neutralization occurs. Tne rate of disappearance of ion-ion or
electron-ion pairs scattered along the track of the ionization beam is time-dependent and is given
by the appropriate solution of (2.129) applicable to 'columnar' recombination rather than
'volume' recombination as discussed here.

When ." ions are generated instantaneously by a spherical surface source at distance R0 from
the central positive ion, i.e. R0-ion pairs are produced, (2.89) is solved subject to

n(R, t = 0) = J4"exp (-V/kT)8(R- Ro)/4nR2,0

j(S, t) = 1,3 n(S, t),t (2.130)

n (R oo, t) = 0.
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For the field-free case (V =0), by analogy with the corresponding problem in heat conduction
U(Carsiaw & Yeager 1959), the solution can be written in terms of the quantities Xand Qassociated

with a continuous source at infinity as

n (R, t; R0, S) = _____R 1jj~ 1- -12 + exp(-91)] - 2 xp 1exp2.QXerf ( +Q,

(2.13 1)
where Q0 (R - R0 )/2 (DI) i, A?1 = (R + &- 2S) /2 (Dt) 1 (2.132)

are similar to (2.102), and X(' = (1 + a3/ad) (Dt) i/S, (2.133)

as before (equation (2. 101)) in terms of (2.91 c) and (2.99). If the ions are generated at the reaction
surface, R. = S and Q. = A?,. The volume external to the spherical surface of the sink is Y, so that
the frequency (s0) of recombination is then

= ~tf(=)dR = Uran(S,1; R0 = S)

= [XFr./(4Dt) 1] [2/.~'s - 2X (t) exp X1 erfc X]

-[A'T 3 /(4Di) i] d (ex' erfc X) /dX (2.134)

The initial frequency v,(0) is XA' 3/(xDt)i, and as t -- oo, v, -3. zero as v,(0)/2X2. The total
number of ions that have recombined after time t is

X,(t) = Pr(t) dt .!A~ expX2(j) erfcX(t)] -+(2.135)

where the probability of recombination in the absence of the field V is

YV-+ = az/(a3 + ad) (2.136)

and remains less than unity in the presence of outward diffusion.
3 For a general field V(R), the general solution appropriate to (2.130) is obtained by use of

transformation (2. 105) and of (2.111 c) to yield.

+ exp 1221)I 2*sex p, ,exp 2.01 serfc Qs+Q,)} (2.137)

in terms of the corresponding tilde quantities (2.105) and (2.122b). For a coincidcnt source
and sink, the recombination frequency is

Pr(t) = [.A'T3/(4Dt)i] [2/ /ir- 2*8(t) exp~slerfc *sl exp (-- V(S)/k T), (2.138)

where ,i, is given by (2.122b). The number of recombined pairs after time t is

.A'(t) -ep ~rc,] (2.139)

where the probability of recombination in the presence of general V, in terms of the reaction and
transport rates Zrn and %,, respectively, is

R.= Otrn/(at'+2rn), (2140)

as before (equation (2.77 d)). Thus .P is controlled by the relative rates of reaction and transport.

At low N, .- r an,fXt, while at high N, .;P, - .Expressions (2.121 a), (2.122a), (2.137) and
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(2.138) represent the first time that analytical solutions of the Debye-Smoluchowski equation

a subject to conditions (2.90)-(2.92) and (2.130), respectively, have been developed for any
(general) interaction V(R).

The above analysis has therefore shown that the same key quantities appear in two distinct
time-dependent problems: homogeneous recombination where the process is driven by a source
operating continuously at infinity; and geminate recombination where the process is initially
established by an instantaneous source of ion pairs within the medium (as produced by a laser

l* burst) and is controlled by the relative reaction and transport rates.
For :-,tense ionization, the interaction between the ions can no longer be assumed ab-initio to

be pure couk...ib. The interaction V must then be determined by self-consistent (with the
recombination) methods as developed in § 4.

Competition between the increased number of sinks (assumed equivalent) for the flux incident
from infinity is acknowledged by the last term of the following equation:

.Op(R, t)/ t = V. 1jp - Frp4(R-S) -,(t) (p(t)>sp(R, t), R > S, (2.141)

for the concentration p in cm-6ofR-ion pairs such that p dR is the concentration of ion pairs with
internal separation R in the interval dR about R. In (2.141) the density of unreacted ion pairs
(with R > S) is

(0 8 = J"p(R t) dR = - 4irR2 p(R, t) dR, (2.142)

and the inward diffusional-drift operator ,i is given by (2.45) since we assume in addition that
the diffusion coefficient D remains constant. Substitute

in (2.141) where C satisfies p(R,t) C(t) g(R,t) (2.143)
ic(t)n)s = -a (g(t) )8 C(t), (2.144)

such that the probability density or pair correlation function g(R, t) satisfies the usual Debye-
Smoluchowski equation,

Zg/0t = V. /fg -/'.g8(R - S) (2.145)

*! for an isolated sink surrounding a positive ion (say).

Thus C(t) = CO/ I +Cf a(t)(g(t)>sdt , (2.146)

where CO is the initial concentration of ion pairs, describes the time decay of all ion pairs via
recombination, and g(R, t) describes the spatial distribution of R-ion pairs. The recombination

rate

a(t) [ ffRp(R, t) dR]/N+N-, (2.147)

therefore satisfies
a(l) {1 -((g(t)>% C'(t)/N+N-)} = ao(t) C(t)/N+ (2.148)

where ao is the rate that is obtained from appropriate solution of (2.145) for an isolated sink (or
constant C). When the initial concentration CO and the recombination time t are sufficiently
small that

CJ o (t) g(t)>sdt , 1, (2.149)

and C(t) remains constant z N± then equations (2.147) and (2.148) reduce to the case of an
isolated sink with associated rate ao.
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3. 'GENERALIZED QUASI-EQUILIBRIUM', STEADY-STATE METHOD

FOR THE REACTION AND TRANSPORT RATES

Rather than from the complete determination of a via solutions of (2.20) inserted in (2.52),
or alternatively in (2.59) via a3 of (2.44), intrinsic physics may yet be uncovered from the solution
of (2.43) with (2.44) modified by a procedure suggested by (2.35): either neglect upward
transitions k,,; or, in effect, rewrite the energy-change frequency terms on the right-hand side of
(2.47a), with the aid of the null-collision relation (2.41), as

C ( c c )

N =Z N Z kit- 1= N'kn) , N*v(R), (3.1)

where v(R) is some averaged collision frequency vd/A in terms of a mean free path A. With the aid

of (2.46), (2.53) and of relation (2.10), (2.50) in this approximation yields,
rd.R) d ( VlkT u) ]f rai (R. RE)

4 ,R2D [d+ +(R) + n () - a(R) n(R) f R 4 v(R) n(R) R2 dR, (3.2a)

! -DR'n(R), R r< RE, (3.2b)
-A

,F(R,), a constant, R > RE, (3.2c)

in which the speed vd used for ion pairs within the collisional sink that extends to RE is assumed
to be mainly controlled by the speed DIR (cf. Flannery 1976) of inward diffusion due to the effect
of the sink on the ion distribution. By use of an integrating factor exp (V/k T-R/A), (3.2b) is
solved to yield

K n(R) exp ( V/k T) exp (-R/A) = n(RE) exp[V(RE) /k T] exp (-RE/A) (3.3)

for R < RE. For R > RE when the sink exerts a constant effect, the right-hand side of (3.2c) is

constant so that the constant flux solution (2.58a) applies. Hence, continuity at RE requires

n(R) {exp[V(R)/kT]exp(RE-R)/A+[P(RE)/, ] ac(R)) = N-, R 4 RE, (3.4)

where the constant flux F in (3.2c) is equivalent to ta3(R) n(R) for R > RE. The overall recombi-

nation coefficient is,
{ 3(R.) ex [ -V(RF)/kfT]}cch/P(RE,)

Ot= [a3(RE) n(RE)I = ) 3 (R)exp[- V(RE)k T]) +tIP(RE) (3.5)

as before. Since ah varies as N-1, at low densities (and for small R), when the second term in

the right-hand side of (3.4) can be neglected in comparison with the first,

n(R) = N-exp[- V(R)/kT] exp (R-R.,F)/A, R < RE

= no(R) exp (R-RE))/A. (3.6)

Hence (3.2a) yields
4n p -RE.a 11E

a3 (RE) no(RE) N - exp ( f Vdexp[- V(R)/kT] exp (R/A) R2 dR. (3.7)

The speed Vd exp ( - V/kT) appropriate to the distribution (3.6) is taken as approximately

its thermal value (v) corresponding to energies greater than - E. Hence, at low densities,

a 3 (RE) exp[ V(Rp)Ik T] = (4n(v)/A 2){[2 -2(RE/A) + (RE/A)2] -2exp(-R/A)} (3.8)
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K which, in the low density limit, reduces to

3A
a(R)exp- V(RE I)k T] =E IIA) + ...], T (3-9)

which exhibits an N-variation (A - N- 1) similar to the low density limit of the expression of
Thomson (1924). At low densities ah >c 3, So that the actual recombination coefficient is

U low N

a a3 (RE )xp[- V(RE) /k T] =rn, (3.10)
the reaction rate.

At high gas densities a 3 > a j such that the actual recombination coefficient (3.5) approaches
the limit,

high N

a- ah/P(R) - atr (3.11)

the transport rate. Hence, this procedure has shown again that

a = arntr/(arn+atr) (3.12)

b" is limited by either the transport or the reaction rates whose variation with N is contained in
(3.9)-(3.1 1).

The above simplified model, designed to reproduce the result of a detailed history of energy
changes in ion pairs via ion-neutral collisions in a dense gas (which can be established) suggests
introduction of phenomenological ion and ion-pai; densities

i(R) = n(R) exp (s/A), R(R) = N(R) exp (s/A), (3.13)

where s is the radial length RE - R from some radius RE within which energy-changing collisions
are effective.t Hence, (3.2b) with Ttr replaced by Tyields,

dfi(R) + ( v/kr)
dR + iR R 0 , (3.14)

which can be solved to yield,
(,

n(R) = N-exp(- V/k T)exp(-s/A) -5 ni(R,EI), R < RE, (3.15)
'---V

where ni(R, E) satisfies the system of equations (2.20) that describe microscopic events. When the

effect of the sink operating in the ( - M -. - V) range of energy levels is small, the right-hand
side of (2.20) can be taken as approximately zero such that solution of the left-hand side set to
zero yields the Maxwell-Boltzmann distribution no(R, E) in (2.14) for ions in thermodynamic
equilibrium. When n, is summed over all E1, or integrated over all v, as in (2.9) the Boltzmann
term in (3.15) is obtained. Provided that the effect of the sink is small for ion pairs with internal
energy greater than - E, an iterative solution can be proposed by assuming the left-hand side of
(2.20) to be zero, as if in full equilibrium, and then including the sink to first order by solving the
equation

dR N ~dN(R, E,) = () dR Nt(R, Et) kn,(R), (3.16)
r V fo, f- M( t)

which follows from (2.20). Since the E- or v-averaged effect of the left-hand side of (2.20) is
measured by .2n(R) on the left-hand side of (2.47) and hence, in the approximation (3.2a) basic

t In this sense Thomson (i944) displayed remarkable intuition in his concept of a trapping radius, a concept
fulli exploited in §2.4, §2.5 and §4.2 in the form of sinks compressible with N.

3I; Vol. 304. A
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to this section, by A of (3.13), the small departures of the left-hand side of (2.20) from zero can be

reintroduced by replacing N* in (3.16) by the fictitious densities

fl(R, Ej) = Nj'(R, E) exp (s/A). (3.17)

Provided the level - E is sufficiently high that departures from thermodynamic equilibrium
are indeed small, and yet is sufficiently low in the bound spectrum that vi(R) on the left-hand
side of (2.20) does not depart appreciably from zero, its value at the turning points, it follows
that densities of bound ioa-pairs with E, < - E can still be obtained from (3.16); and replacement

of Ni by IV will minimize any error in the original assumption.
The recombination coefficient a3 associated with negative ion density n(R) is therefore, in this

approximation,

a3(R )= N+7 f0  exp( s/A)dR .S,(R,E,) kvk(R) -  R f I(R, E)kn.(R),N ,- I - =- f--M(R)

(3.18)
and the overall recombination coefficient appropriate to the R-asymptotic density N- can then
be obtained from (2.52) directly or from (2.59).

In the limit of low gas densities N, and low ion densities N±, departures from thermodynamic
equilibrium are indeed small, a - a3 and A -+ oo such that (3.18), on reordering integrations,
can be rewritten as,

E) =- Nj"(R, E) kit(R) dR - f" ' N,*(R, E,) knj(R) dR], (3.19),a3( - E) = N c- _E t f-nJ

£ i where - D is the lowest bound level of the system, -S is the stabilization level of energy -E s ,
and Rm = min [R(E), R(Ef)], the minimum of the outermost turning points associated with
levels El (bound and continuous) and Ef (bound) respectively. Since (0 -+ Rm) defines the full
range accessible classically, i.e.

N1(Ej) (kit(E,, Ef)>'= N* (R, E) kit(R; El, E) dR, (3.20)
fo

for kit given previously (Flannery 198o, 1981 a) we have
•Iow.v N c [ - ,. ]

a-"-a 3 (-E) = N+ "- [Ni(EI) Y (k.> - N(Et) , (3.21)Nv Nv i-E t--D f'- -S

where the ion-pair number density in the classical accessible region is,

N(E.) = N (R, E.) dR (3.22)

which, with the aid of (3.16) with integrations reordered, and of (3.20), satisfies

c C
Nj(E) Z <kit>= (Er) <kn>. (3.23)

-- D f- -

Equations (3.21) and (3.23) are identical with those originally introduced by Bates & Moffett
(1966) and by Bates & Flannery (1968) in their effectively exact quasi-equilibrium treatment of
the low density limit of ion-ion recombination. Because of this, and of the constant flux assump-
tion implicit in (3.2c), the method represented by (3.16)-(3.18) and (2.59) is designated as the
'generalized-quasi-equilibrium-distribution' steady-state method to remind us of the under-
lying assumptions.

I. 
I
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4. THEORY OF ION-ION RECOMBINATION AS A FUNCTION OF ION DENSITY

All previous theoretical and experimental studies of ion-ion recombination pertain to a dilute
degree of ionization with ion densities N± - 10 cm- 3 for which a coulombic ion-ion interaction
is correct. Ion-ion recombination plays a key role (Flannery 1979) in populating the upper laser
electronic levels of rare gas-halide systems which operate not only at high gas pressure (4-10 atm)

a but also at relatively high ion densities 1012 < N± < 1014 cm-. In § 4.1 is developed a theory for
the variation of oc with N±. A useful procedure proposed in § 4.2 for the rapid evaluation of the
reaction rate arn permits illustration of the variation of ot with gas density N.

4.1. General theory

The interaction V between the positive and negative ions can no longer be assumed, ab initio,
to be pure coulomb, but depends on the increased screening due to the other ions via their net

. charge-density distribution which, in turn, is coupled self-consistently to the recombination sink
via a which contains an explicit dependence on V. Repulsion between like ions also becomes
important. The interaction V between the ions is determined by appropriate solution of Poisson's
equation V2 V(R) = (4te'/e) [n+(R) - n-(R)], (4.1)

where the local positive and negative ion densities are n±(R), and c is the dielectric constant
1 + 4iNp of a gas with polarizability p and density N. For Xe, e = (1 + 1.4 10- 3 N/NL), in effect
unity for N < 2 5 (NL, the number density (2.69 x 1019 cm-3) at s.t.p.). In the steady-state limit
when few unreacted ions are within the recombination sink measured by RE of § 2, the net
inward flux (in s- 1) of positive ions towards the central positive ion is

F1 +(R) U ,+nt()  V (4.2)

where D and K + are the relative quantities 2D, and 2K, in terms of the diffusion coefficient DI
3and mobility K, for a positive ion 1. The net inward flux of negative ions 2 towards a positive ion

is, F+(R) = 4nR 2 [D 4L + n-(R) e 0' V (4.3)

where D and K are the relative diffusion coefficients (DI + D,) and relative mobilities (K + K,) for
ions I and 2. In the reference frame of the central positive ions, assumed stationary, F++ vanishes,
and integration of (4.2) yields the Boltzmann distribution

n + (R) =- N + exp [V(R)Ik T], (4.4)

where T is given by Te in (2.57) when the Einstein relation no longer holds. Hence, Poisson's
equation for spherical distributions is

I , R2- = {N+exp[V(R)/kT]-n-(R)}. (4.5)

For a single isolated sink, the steady-state density n-(R) of negative ions is given by (2.64), and

9 L R ]0CV/kT ] I exp[V(R)/kT][ I - 1  [[(R)kT] (4.6)R2=R R -2fl a,,rp(RF.lx[VR/T} 46
where the 'screening' distance is

R. (8rN±R,/le)-i. (4.7)

31-2
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The R-variation of the right-hand side of (4.6) is given explicitly by V(R) and P(R) and
the interaction is contained implicitly within the recombination probability,

a/,,, = amn(RE)/[a..(RE) + a,,(RE)], (4.9)

from (2.62), where a,,, is the reaction rate (2.61), i.e. the recombination coefficient that would
pertain provided a Boltzmann distribution of ions (with no net transport) were maintained as at
low gas densities N, and atr is the transport rate (2.63), i.e. the recombination coefficient that
pertains for instantaneous reaction within RE, as at high N. If an analytic expression for air is
known in terms of V, as in § 4.2, then a self consistent Vcan be obtained from (4.6) with (4.8),
since air is given in terms of V by the analytical expression (2.63). Otherwise, (4.5) must be

* coupled to the solution of

4nR2L[DilL1) + n(R) I.V] 4R2D exp (- -l )d[-R)ep(lT/... R' D e R]

= ac(R) n-(R) = aN- (4.9)

for n- (R), where the right-hand side of (4.9) is given by (2.50) in terms of the phase-space densities
ni(R, E) determined from (2.20) with collisional rates kif(R), which in turn depend on V.

Hence the general theory involves the coupled solutions of the Poisson equation (4.5), of the
flux equation (4.9), and of the Boltzmann equation (2.20), i.e. the interaction V is solved self-
consistently with the recombination. Application of this general theory represents a formidable
but yet a feasible task with the aid of new theoretical procedures for the solution of (2.20) for the
phase-space densities n, (R, E).

Note that it is only a,(R) that depends on explicit knowledge of ni(R, E,) so that, provided the
rate arn of reaction can be provided analytically by alternative procedures, the above prescription
reduces to the solution of (4.6) with (4.8). The term 1 - (a/ar) [P(R)/P(RE)], which depends on
V, N and R, on the right-hand side of (4.6), tends to unity at low N for all R, and increases at
high N, from zero at R - RE to unity as R -+ oo. As Re -*. o for no plasma sheathing, solution of
(4.6) is pure coulomb so that a (first) iterative solution valid for low Nt (large R.) and high N in
the vicinity of RE is

}'T+ - -Fi2 Rexp(-RJR.), RE < R,4R., (4.10)

where Re is the natural unit (e'/kT) of length. High-order iterations may be obtained. This
interaction (4.10) is pure coulomb for R 4 R, as at high N, or else, for R3 4 12R, R, i.e. when
N± E 1014cm - 3 at R Z Re.

To facilitate numerical solution, equation (4.6) may be decomposed into three coupled first-
order differential equations,

dv,/dr = v,(r),
dv 2/dr = - (2/r) v2(r) + (1/2r.) [exp v, (r) - v3(r) exp - v,(r)], (4.11 a)

dv3/dr = (a/ah) exp v,(r)/r2,
where all distances r = R/Re are expressed in natural units, v, = V/kT, and v3 is the fractional
departure n-/N-exp (- V/kT) of the ion density from Boltzmann equilibrium. The first two
coupled equations are equivalent to the Poisson equation (4.5), and the third equation represents

00 diffusional drift (equation (4.9)).
When v, -4 1 as at large r, the exponentials in (4.11 a) may be linearized to provide

VS Z a/'6r (4.11b)



.- - - - - - - - -'

THEORY OF ION-ION RECOMBIN..TION 4,43

aso that the consistent and appropriate solution of the Poisson equation

I d2 (rv )l al (4.tlc)

r 1/2 a. r
V ! ! It exp ( -r/rs) , 4.! d

is v((.) k1 -1r - 2rd)

U which yields the coulomb attraction (C) for r << r8.

At low N, v- -(1/r) exp (- r/r.), (4.11 e)

the Debye-Huckel interaction D.H. (cf. McDaniel 1964), while at large N when a Z ah,

V - (I/2r) [1 +exp( -r/rs)] (4.1 If)

the mean of C and D.H. For intermediate N, v, contains various mixtures of C and D.H.
Direct numerical inward solution of (4.11 a) subject to (4.11 b) and (4.11 d) as initial conditions

at large r shows that (4.11 d) remains an excellent solution by reproducing the actual numerical
results to within 2% for all r > 0.1, for c/ah between zero and unity and for N± < 10'3 cm-3 . As

a/h decreases from unity the accuracy becomes even better.
The criterion v, '4 I is satisfied at r - 1 (the important region at low N) and at small a/ca when

r > I which with (4.7), implies that #zR'N± = Ir s > 1. Many ions are then present within the
R-sphere, and N± < 2 x 1014cm-.

As N increases, the extent RE of the reaction sink decreases as (R,/N)i (see § 4.2), such that
(4.1 If) is pure coulomb at Rf, in the high N-limit. For lower N, the situation is not as clear,
without resort to explicit knowledge of the rate a of reaction.

4.2. Simplified method for reaction rate

Rather than solving the Boltzmann equation (2.20) directly for the phase-space densities
ni(R, E) and hence arn from (2.50), let us adopt a procedure based on the analysis in §2.4 of the
finite reaction rate arn within a collisional sink of radial extent S. Since the X + and Y- ions
(i = 1, 2) have in general different mean free paths Ai in the gas Z and since both ions have
different sink radii Ri, the expression (2.84) or (2.91 c) for the rate of reaction within S is therefore
generalized to give

..,(RI,,R2) = ,[)PW'(X) CE, + R2W(X) C.Eg- R11 ,WY) W(Y) G] <v,,>, (4.12 a)

where <v, > is some averaged ion-ion thermal or transport speed of approach, and where the
probability for an ion i-neutral Z collision for ion pairs with internal separation R < R; increases
with gas density to unity as (Loeb 19S5)

IV(XY) - I - (l/2X;) CI -exp (- 2X) (I + 2X 1)], Xi = A,/Ri, (4.12b)

for a straight-line trajectory. Since I rn pertains to a Boltzmann distribution, the factor

Ei = exp[- V(Ri +A)/kT], (4.12c)

in (4.12a) acknowledges the Boltzmann enhancement of the ion density N- due to the field at
R, + A, at which the last ineffective ion-neutral collision occurs just before the ion enters the
recombination sink within Ri. The factor

2 R' +A,

C + 21 + RJ ,7  dR (4.12d)

3kTi, R
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ri acknowledges the focusing effect of the interaction on the assumed straight-line trajectory
between R, +A, and Ri in the cross section nRi. The smaller of R, and R2 is Rm such that
W(Y,) W(Y.), with Y = AR., is the probability of simultaneous ion-neutral collisions within
R., a probability counted twice by the suni of the first two terms of (4.12a). Simple geometric
arguments show that G in (4.12a) is eqva, to either CIE, or C2E2 depending on whether Rm is
equal to R, or R2, respectively.

The trapping radii R, may now be deduced from simple kinematical considerations. The
kinetic energy of ( 1, 2) relative motion before the i-Z collision is

Tb = IkT+J .dR, (4.13)

since the ions on average are uninterrupted by collision only for separations between R, + A, and
Ri, within which the acceleration due to the field is effective. Ion pairs upon collision with Z
become incapable of expanding outwards from R, to Ri + A, provided their kinetic energy T. after
collision is barely sufficient for provision of the energy required to increase R, to Ri + A against
the fbrce of attraction, i.e. when I ,+aV

T f TR dR. (4.14)

We can show (Flannery 1978) from the full expression (Bates & Flannery x968) for the energy
change that, to a good approximation,

T = rTO +8), (4.15)

where 8 is a parameter depending only on the masses M, of the interacting species. Here we

K9 simply adopt J as a convenient collision parameter chosen to normalize the low-density limit of
the expression (4.12a) for Orn to the exact quasi-equilibrium results of Bates & Flannery (x968).
Thus, the stabilization criteria (4.14) with (4.13) yields

• VCRt + A t) - V(Ri) = Jk T18,, (4.16)

to be solved for the trapping radii Ri associated with mean free paths Ai and collision parameters 8.
g In this strong-collision model, (4.16) provides a valuable relation satisfied by the general

interaction V at two points. Solution of (4.16) for a pure coulomb attraction is

R = iA[(1 +48RTr/Ai)|I] --_ 8RT, as N- -, (4.17)
= +1-(RT,~i, as N-*oo,

which decreases monotonically as Ai decreases from infinity and which is constrained by (4.16)
to satisfy R8(Ri+Ait) = 8 A RT, where RT is the Thomson trapping radius 2e'/3kT. The sink
is therefore compressible with N, as in the model of Natanson (1959).

At low gas densities the reaction rate

where Ci, by (4.16), is I +8, -' and

OtTI = 1794v 1 /A, (4.19)

is the Thomson partial recombination coefficient (1.3). The ratio
MTt = a q.e. (N -+ 0) lotr (4.20)

of the exact low density limits a'q.e., as given by the quasi-equilibrium theory of Bates & Flannery
(t968), has been provided (Flannery 1981 a) for an extensive range of physical systems repre-
sented by

X++Y-+Z - [XY] +Z, (4.21)
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where energy-change transitions occur via elastic ion-neutral collisions. Also, the .?.ri have been

H provided (Flannery 198o) for a wide range of systems represented by

X++Y- + X -* [XY] +X, (4.22)
where in addition to an elastic (Y--X) encounter a symmetrical resonance charge transfer

encounter occurs, or by
X+ +Y- +Y -[XY] +Y. (4.23)
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i FIGURE 2. Recombination rate coefficient a at 300 K for Kr+-F- in rare gases (Ne, Ar, Kr, Xe) as a function of
gas density N (in multiples of the Loschmidt number density NL = 2.69 x 10"9 at s.t.p.). - : Present treat-
ment; x, C0: universal Monte-Carlo (hard-sphere) plot (Bates t98ob) for Ar and Ne, respectively; 0: Monte-
Carlo (polarization) results (Morgan es al. 198o) for Ar.

With this knowledge, the collision parameters 8j may now be uniquely determined by solution of

£ + +1 = 0, (4.24)
and a,. of (4.12a) tends therefore at low N to the exact quasi-equilibrium values (Flannery
198o, t98i a). This model of the reaction rate acknowledges the decrease in survival probability
due to diffusion for ion-neutral collisions within the P&-trapping spheres, and, with the inclusion
of the quasi-equilibrium 8j, is the 'strong-collision' analogue to the microscopic method provided
in § 3. The strong-collision parameter 8, is, in general, a function of ion-density N±.

4.3. Resultsfor [(Kr+ - F-) + M] recombination

For a pure coulomb interaction associated with dilute ionization, the collision parameters 8,
have been given (Flannery x98i b) for various combinations of rare gas (He+, Ne +, Ar +, Kr +, Xe+)

"' and halide (F-, Cl-) ions in a parent or unlike background gas M. In figure 2 are illustrated the
variations of the rate

a. = / +a (4.25)



486 M. R. FLANNERY

for the recombination of Kr+ and F- with density Nof the background gas M, taken respectively

tias Ne, Ar, Kr and Xe, at 300 K. The reaction rate arn was obtained from (4.12), with (4.17) for
R, and the solution of (4.24) for 8, and the transport rate from

atr = 4ne(K 1/[1 - exp (- Re/Ri) ] + K2/[1 - exp ( - R/R 2 )]). (4.26)

Results from the universal Monte-Carlo plot procedure of Bates (i9 8ob) are also shown in figure 2
together with the direct Monte-Carlo computer simulations of Morgan et at. (198o) at low N±.
The general agreement as shown can be considered excellent. At low N, rn '< atr while at high N,

Mrn > ir so that a is given by the rate-limiting step in each region. As N increases, arn increases
with respect to air until the maximum is obtained where arn -z at,. Figure 2 can be made
universal for all temperatures T by simply relabelling the ordinate and abscissa axes as (T/300) a
and (300/T)i N respectively as pointed out by Bates (198oc). Analogous results for other
systems are presented elsewhere (Flannery 1981 b).

- At higher N-, the interaction between the ions varies in general with a, and is accurately
determined by (4.11) which therefore must be coupled to the equation (whether basic as (2.52)
or phenomenological as (4.12)) for a. At high gas densities (N > , N), Morgan et al. (1980) simply
adopted ab initio the D.H. interaction (4.11e) as a means of incorporating plasma sheathing
effects when Nt is raised. As shown in § 4.2 this assumption is without foundation unless N-) 0
and leads to greatly reduced rates which are in error particularly at intermediate and high gas
densities N(Bates 1981, Flannery 1981 c). Although increase in the ion density to about 1012 cm- 3

is not expected to cause appreciable change (Flannery 1981 c) to the rates of figure 2, direct

calculation based on the theory of§ 4.1 is under way.

5. THEORETICAL SOLUTION OF THE PHASE DENSITY

Since the phase-space density of ions in thermodynamic equilibrium separates quite naturally
into a product of two functions-one of R alone and the other of vi alone-as in (2.13), it remains

convenient initially to express the set in terms of these natural (R, vi) variables rather than (R, E)

the set more natural for expression of the sink. Upon differentiation of (2.20) with respect to R
or from (2.12) directly, we find with the aid of (2.10), that

. . , [N,(Rv)/4 ]R

f f [N7(R, v,) N0(v;) - N*(R, vi) NO(vo)] [ga(g, ) d-Q] dvo (5.1 a)

= N[X N*(R, Et)ki(R)-N* (R,E,) . k()], (5.1b)

which is a set of linear integro-differential equations in two variables (rather than quadratic in
V(R, v) since the gas density N0(v 0 ) has already been set in (5. I b) to its thermodynamic value,

as implied by the condition N- ,9 V,). The speeds v; and vt in (.5.1 a) are given by energy con-
servation with fixed z, v0 and 12'. The recombination sink at internal energies below E. requires
that N* vanishes for

ur ! vro = {2/m[E,- V(R)]}I, R < R(E,). (.5.2)

| The equilibrium phase density (2.13) in (5. 1) ensures that the left-hand side of (5. 1) vanishes.

This left-hand side includes the streaming (incompressible) terms while the right-hand side is
the collisional integral that attempts to drive the momentum-space distribution of the system
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towards a Maxwellian distribution. For small energy transfers the collision integral reduces
(Flannery 1971, 1972) to that given by the Fokkcr-Planck equation (which essentially describes
diffusion in momentum space) derived via description of recombination as a Markov process
Flannery 1971, 1972). For high gas densities and for high ion densities (more than several N) tle

decreased effect of accelerations and the increased ion-ion screening effect ensures respectively
that the interaction V << k Tsuch that energy transfers are indeed small, such that the right-hand

* side of (5.1) is then best described by the Fokker-Planck equation.
For dilute ionization, N + < N, two new procedures are proposed with the above comments in

mind for the solution N,* (R, vi) of (5. 1) subject to certain boundary conditions.

5.1. Separable-equations method
In expression (5.1), let

N* (R, v,) = No(R, v, ) [I - 01(R, v,)], (5.3)

in terms of the equilibrium density

No(R, vi) = 4UtR2exp (- V/kT) Fo(v,), (5.4)

where the Maxwellian speed distribution is

, Fo(v,) = 4nvi(m/2k T)I exp ( - Jmvf/k T). (5.5)

: Since energy is corserved in the binary ion-neutral encounters,

N(R, v,) A.(vo) = No(R, v) N(vf), (5.6)

and hence, after some analysis, 01 satisfies the set

t" [ mv0' -I -- 5 A(vo) [Of (R, vf) - 01(R, v,)] (g-7dQ) dvo

O N - 1 (REf)- Z OI(RE 1 ) kt(R)j (5.7)

subject to the boundary conditions that

"l(R, El) 0 for E --. x, or for R-.oo

forE, < Es, R < R(E,). (5.8)

In the limit of low gas densities N, the net rate of change of each of the streaming terms con-
tained within all classical accessible configuration space between zero and R,(E,), the outermost
turning point, effectively balance, since the sink rate is small by comparison, i.e.

j,,4nR2 0I N4 )R ] R m V( I4 lwJo N*(R,v,).dR]. (5.9)

The average rate over all accessible R-space of collisional transitions between levels with
energies El and Et can be written as,

<kit(E,Ef)> - N ) N*(R, E,) ki,(El, Et, R) dR, (5.10)

where Nf(E) = N?(R, E,) dR. (.It)

9.
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Hence, (5.1) reduces, with the aid of (5.9), to

C C
Ni(Ei) Z (kif(Ei,Et))= . N,(Ef)(kif(E,,Ef)) (5.12)

t- -D f=- "
,t - '

which is the 'quasi-equilibrium'result ofBates & Moffett (1966) and ofBates & Flannery (1968)
for ion densities N, appropriate to the limit of low gas densities N and valid when the left-hand
side of (5.7) can be neglected.

As Nis raised the first (spatial diffusion) term on the left-hand side of(5.7) becomes increasingly
important while the second (acceleration) term eventually dominates in the high N-limit. Note,
however, that both these terms must be included from the outset since their combination is
required for thermodynamic equilibrium. Neglect of the acceleration term on the left-hand side
of (5.1) does not yield, upon substitution of (5.3), the expression (5.7) with its acceleration term
set to zero. Effects of diffusion and acceleration are so coupled that various schemes of approxi-
marion are best constructed from (5.7) as origin, rather than from (5.1).

For example, as N is raised, the speed distribution remains essentially Maxwellian while
diffusion effects change, i.e. the correction 0, in (5.3) to the Maxwell-Boltzmann distribution
No exhibits an R-variation alone. Hence the acceleration term in (5.7) can be neglected in com-
parison with the diffusion term, and with the substitution in (5.7) of

01(R, vi) = Ol(R, vi) exp ( - R/LI), (5.13)

where the length Ll(vi) a L(R, E,) - vI/N, k (R) (5.14)

is a function only of v, (see Appendix B) then, after some analysis and reduction, O satisfies the
set of first-order coupled differential equations

a Ii( R, EI ) N
a=f(,EZ _ , d(R,Et)ki,(R)exp[-R(LF-Lii-)],

which, by standard numerical techniques, can be solved easily subject to the boundary conditions r
*(5.8).4

The above set exhibits a striking similarity to the time-dependent set obtained in collision
treatments based on Dirac's method of variation of constants (cf. Bates 1961). In f"t, pertur-
bation procedures based on the strength of the coupling terms kif result in a full hiei.rchy of
computational schemes of varying degrees of sophistication. For example, the {k1 -matrix is
dominated by its diagonal (elastic) elements (cf. Flannery 1981 a) such that to zero-order the non-
diagonal elements are neglected, iv give

.0 eto) N- M -- k,(R) ¢0, 0.16

with solution

01-(R, v1) = exp.--jki(R)dR; v,(R) > (5.17)

which ensures that N1(R - O,vI)/ANo(R = O,vi) in (5.3) vanishes.
In this approximation, the phase density is

NI(R, E1 ) -N,(R, v,) ( exp[-RN k(R)v1] exp[-N'k(R)dRv], (5.18)
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which tends to N as R --> oo. It is worthwhile noting, even for approximation (5. 18), that a given
by (2.52) predicts a general nonlinear variation with gas density N for which the acceleration
term in (5.7) can be neglected. Since off-diagonal terms are also ignored in this approximatiom
to Oi, there is no coupling with the sink, and (5.18) is valuable only in providing interesting

Li insight to the manner in which the diffusion term on the left-hand side of (5.7) affects the
R-distribution of ion pairs. Full coupling with the sink is provided only by solution of the full set
of coupled equations (5.15).

In the limit of high N, (5.18) predicts zero a, and the diffusion (R-gradient) term in (5.7) may
therefore be neglected in comparison with the acceleration (vi-gradient) term. With the

C substitution
, I 1(R, vj) = 011 (R, vi) exp (vI!V'), (5.19)

where the effective speed is

1,(R,E,) = =V)/mN2ki= a(R)r1 (R,Ei), (5.20)

in terms of the acceleration a(R) and of time r1 - LI(v2)/v between collisions, the set (5.7), with
diffusion ignored, yields, after some analysis and reduction, the set of first-order coupled differ-
ential equations

?011(R, E1 ) ff N 0 0 '(R,E,) kir(R) exp[(v/V) - (v,/V)] (5.21)
ev, a(R) f- -.N1

analogous to the previous set (5.15). This set can also be solved to various degrees ofsophistication.
As before, the zero-order approximation follows by neglect of the off-diagonal elements to yield,

0¢ II  q t)  N kit(R ) V1, (5.22)
a ydJ, O =j -I NR

such that -;M) (R, v1) = exp[ k..I 1(R) dy 1  (5.23)
k a(R)jo J

which vanishes as R - oo. Hence in this approximation the phase density is

N i(R, E,) =No(R, vi) I - exp Nmv, kif 'V] exp [ R kii(R)dvi (5.24)

which exhibits an increasing or decreasing variation with N, depending on the kinetics of the

collision.
For general N however, both diffusion and acceleration terms in (5.7) are effective. With the

assumption that the first solution 01(R, v,) contains most of the R-variation and that 01t(R, vi)
contains most of the vi-variation, a working approximation for the general case (5.7) is

IP(R , v,) A: |(01 + 0/), (5.25)-

where 0,1 t1 are the full solutions of (5.15) and (5.21), -espectively.
In the zero-order approximation that ignores the effect of the sink, we have

41 Ni (R, v,) -No(R, v,) I - jexp (- NR ,/v,) exp(- o k,, dR)

-iexp [imv if OR exp (I {1Rf' kil dv,] (5.26)
f X I 'M o D



490 M. R. FLANNERY

which tends to N, when R --> a or when vi - oo. This 'one-channel' result is useful in providing
N insight into the overall effect of the diffusion and acceleration terms on the ion distribution.

With (5.26) as a background density, various corrections may then be obtained. The effect of
the sink is, of course, acknowledged by the full solution of (5.15) and (5.21).

Calculations based on the procedures outlined above are under way and will be presented in
future reports.

5.2. 'Distribution in length between collisions' method: the frequency equation

The second and very effective approach for solution of (5. 1) for the ion-phase densities is based
on the recognition that the collisional integral, the right-hand side of (5.1), in contrast to the
'incompressible' streaming terms of the left-hand side, attempts via quasi-discontinuous collisions
to drive the momentum-space part of the distribution towards Maxwellian at a given ion-ion
separation R. With this in mind set the ion-pair distribution as,

N(R, vi) = [4UR 2 A(R) Nj] FO(vi) [1 + 0 1 (R, vi)], (5.27)

where fi(R) is some negative-ion configuration-space density yet to be determined, and where
Of, which represents the departure of the momentum distribution from the Maxwellian Fo(vi),
will provide coupling to the recombination sink. On substituting (5.27) in (5.1), by noting that

the acceleration term operating on the Maxwellian produces

4Ev rFo(vi) (V/kT) (5.28)
m Zvi L 4 mvIFo(v1 ) 'R

Uafter some reduction, we obtain (5.1) exactly as

R ZR T,

= A(R) Fo(v,) [ff A(v 0) (Of - O) (go, dQ) do (5.29)[ffo. Id, ~l-

where the D-operator is such that

f d-R + d(VkT) i(R)' (5.30)

and where T, the normalized kinetic energy of ion-ion relative motion is imvi/k T. The separ-
ation of the collision integral (the right-hand side of (5.29)) into its various components suggests
the solution

0 (R, v,) = - [I/, (R)] Dfi(R) l(v?, R) (5.31)

where 1, is an unknown function principally of vi, but only because of the recombination sink will

"- depend, in general, on R and El. In thermodynamic equilibrium, Of is zero and fi(R) is
N- exp ( V/k T) such that DtI vanishes. Hence the D-operator in effect projects out the background

R-variation due to outward diffusion and inward mobility and leaves only that R-variation due
to the presence of the sink alone. When departures from thermodynamic equilibrium are not too
strong we need not restrict Df to be small but its derivative d(f)fi)/dR must vanish. Under this
sole approximation (5.29) reduces with the aid of substitution (5.31), and after some analysis, to

vi R "ViR T J = N[I-(R, EM) k, k 1(R ) - lf(R,Et)kt,(R)I. (5.32)

-------------------------- ------ -------------------
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The frequency Vj of ion-neutral collisions is
C

vi(vi) = N Z k1f(R), (5.33)
f=-V

such that the interval ri between collisions for ions of speed v, is i-' and the mean length LI

of their free paths is
* Li(vi) = vi 7j = vj/vj. (5.34)

When the ion-neutral collisior cross section QE or Qx for elastic or charge-transfer collisions is

independent of the relative speed, the path length peculiar to speed vi is, as shown in the
Appendix B,AppendixB Li I,) = ,tiX,/NQX- E[(2X, + 1) I'Tk0.(X,) + X1 ,xp (- X,)], (5.35)

where OE is the error function which is a function of

Xi = iMv;/kT (5.36)

in terms of the reduced mass M of the ion-pair-neutral system. As X, - oc, L, --* (NQ) - = /_

Hence, (5.32) can be rewritten as
11 .I(R, El) +01,(R, v ) 0(V/kT)aI,(R,v2)] C

' [L,(v,) + R O R - Nf=_M I 4(R, E) k(R), (5.37)

the basic equation to be solved for 11 under appropriate boundary conditions.

K The negative ion density nj is from (5.27) and (5.31) given by

n.z(R, E.) = [ti(R) - b f(R) 1i(R, E)] Fo(v,) (5.38)

which tends to no as E-- oo, i.e.

f (R) - hfi(R) I(R, oo) = N-exp (- V/kT). (5.39)

*With use of (5.30) and an integrating factor, (5.39) is solved to yield

fi(R) = N- exp ( - V/k T) exp [R/I(R, o)] exp[ - R/I(R, oo)]IRo (R, oc) d, (.0

which tends to the appropriate thermodynamic value N-exp (- V/k T) as R -* oo. Hence, the

overall phase density is

n1(R, Ej) = N- exp (-V/k T) Fo(v,) 1(R: El) + _ 11(R,E) H(E)
Texp[I(R, -I)]

x exp [R/l(R, ac)]f exp[ -RI/(R, 0)] dR} (5.41)

where the Hcaviside step function His unity only for energies El in the continuum (as implied by

the R - or limit).
As E -* oc, (5.41) ensures that n, -3 no; and as R -) , ni - no implies that

1i(R, Ei) - 1,(x,E,) = (oc, oc) = 1. (5.42)

Hence the set (5.37) is solved subject to the condition (5.42). As E, oo, the right-hand side

of :5.37) vanishes, L -- 1,, and hence

I(R, c) + U(R,c) ('(V/kT) Fa,(R,I 1) 0. (5.4)

IR
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For infinite E, or T, the last term on the left-hand side of (5.43) vanishes and the resulting

equation can be solved, subject to the condition of vanishing 1(R -, 0, o), to give

1'R, x I/[I -exp( -R/I.)], (5.44)

which satisfies (5.42; and which also ensures that (UI/IR)R. vanishes. Hence the phase density

is given by (5.41) in terms of (5.44, and of l(R, E), the solution of (5.37) over a spectrum of

(R, El)-values subject to l(R, oo) as E- oc. Each solution will depend on the gas density N
through I..

At high gas densities, 1, -, 0, I(R, o) k CL, and (5.41) tends to its thermodynamic equilibrium

value, as expected. At low gas densities 1, -- c, and

1i (R, Ej) , l(R, oc) y(EI), (5. 45)

where 7(Ei) is a function only of Ei and is unity for E, > 0. Hence (5.41) yields

n|(R, E) = N-exp ( - V/kT) F0(v) {y(E) + [I - y(E)] H(E)}. (5.46)

The expres. :on (5.37) for the distribution in the lengths 1i(R, Ej) between collisions for use in

(5.41) and hence in the recombination coefficient a in (2.52) is, apart from the neglect of

d[bi(R)]/dR in (5.20), exact. The chief distinction between this proposed method and the

previous method is that 1i is, in the absence of the recombination sink, a function only of v, , while
0j in (5.3) is a function of both R and vj. Hence the R-dependence in 1j (R, v1) results only from the

sink; the backg-ound R-dependence due to outward diffusion and mobility being acknowledged

already by fi(R).
*] The physical meaning of the functions fi and 11 in (5.27) and (5.31) becomes apparent by
Unoting that the current density (ions cm- 2 s-1 ) is

J, = A(R) Vd = fn,(R, vi) v, dv1, (5.47)

which with the aid of (5.27) and (5.31) reduces, after some analysis, to

D= ,) - + () (5.49)

where Ds -f ., (u) v'11 (v?) d mi s 5.49)

is the diffusion coefficient in the presence of the sink for ions with the radial distribution FieR).

The factor of J in (5.49) arises by adopting the radial direction A as the Z-axis for 1i-integration

of (5.47). Hence 1,(v2) is an actual path length at ion speed vi (and not a phenomenological mean

free path), such that the diffusion coefficient that would be measured in a recombination

experiment is
__ Ds <l ( 1u1>(cm2 s-i), t'(5i

an average over the ion-distribution in tie presence of the recombination sink. In light of this

relation and of (5.34), the basic equation (5.37) which provicdes the average rate of increase of

1i between collisions can be referred to as the frequency equation.

As before, a hierai dhy of approximate computational schemes can be proposed for evaluation

of II(R, E) from (5.37). Since a(R) contains most of the background R-dependence, we can

assume, with the aid of (5.44), that on the left-hand side of (5.32)

elp(R, v-) /.(R, oc)
OR R x
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and neglect initially the acceleration term a( V/k T)/aR. The resulting set of equations,
, [lI,(R, Ej) ]
V, 1 + exp(-R/,,)= N lf(R, E,) k,,(R) (5.52)

can be evaluated by normal computational techniques.

6. SUMMARY

In this paper a basic microscopic theory of ion-ion recombination as a function of gas density N
has been presented. We have developed a basic equation (2.20), a linear Boltzmann equation, for the
distribution in phase space ofion pairs, and have proposed in § 5 effective methods- the'separable-
equations' method and the 'distribution in length between collisions' method -for its steady-
state solution. An expression (2.52) for the recombination coefficient a in terms of the phase-space
distributions has been constructed from theflux equation (2.43), a combination of the equation of
continuity (2.30) and of the momentum equation (2.36), both of which have been derived from basic
microscopic principles, i.e. the macroscopic effects are truly addressed in language of their micro-
scopic origins in the presence of the recombination sink.

An alternative expression (2.59) for a has been derived in terms of are, the rate of reaction or,
equivalently, the recombination coefficient that would pertain provided a Boltzmann distri-
bution of ions were maintained, and of at, the rate of ionic transport by diffusional drift. The
steady-state recombination rate is determined at any gas density N by the rate-limiting steps of
reaction and transport which proceed in series. This expression not only provides interesting

*insights into the internal workings of recombination, as in § 2.4, but is also very valuable when
alternative means (as in § 4.2) are used to deduce reliable reaction rates ar alone, without the
necessity of solving the linear Boltzmann equation (2.20). Further theoretical development of

. ,this expression reveals in § 3 an N-variation ofa consistent with both the nonlinear rise at low Nof
Thomson's expression, which therefore can be identified with the reaction rate, and with the
N-1-decrease in Langevin's result which is the transport rate.

*The basic time evolution of recombination is developed in §2.4 where the Debye-
Smoluchowski time-dependent equation (2.89), which is a natural consequence of the present
basic theory, is so!ved for the time dependence of the density of ions undergoing diffusional drift
in an arbitrary spherical potential and a reactive sink. This solution enables us to investigate
analytically the explicit variation of the recombination rate a(t) with time. For an initial
Boltzmann distribution, a(t) is initially determined by the reaction rate, as expected, and tends
at large t( S2/D) to its steady-state limit determined by the limiting rate of reaction or transport.
For N < N1,, a straight-line dependence of a(t) with t is noted, since the reaction rate is always
much slower, while high N > NL produces the interesting effect of transition between reaction
(initially) and transport, which are the two series components of recombination. This time
variation is such that it would permit verification by techniques of modern laser spectroscopy
and by appropriate Monte-Carlo computer experiments. Such time dependences will be very
important in many applications ranging from medical radiology and biophysics to ionization
tracks.

As N - is raised, the ion-ion interaction V is, in general, obtained as described in § 4 from the
self-consistent solution of the linear Boltzmann equation (2.20) for the phase-space densities,
coupled to Poisson's nonlinear equation (4.5) for the radial number densities. The recombination
rate a can then be determined as a function of both N and N±. Otherwise, if the analytic reaction
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rate Irn is known in terms of V as in § 4.2, then Poisson's equation can be solved directly for V.
* 'Use of'a model for a,,, has been illustrated for Kr+-F- recombination as a function of Nfor various

rare gases.
In conclusion, basic theory has been presented here that thoroughly investigates the recombi-

* nation rate as a function of gas density, ion density and time.

APPENDIX A. ANALOGY WITH CONDUCTING SPHERE

Introduce a single conducting sphere of radius S held at constant potential S into a field of
constant potential 0 . The potential 0 at any point R from the centre of the sphere satisfies

* Laplace's equation, V2 = 0, (A 1)

with solution O(R) = 0[1 - (S/R) (I -0s/0)]. (A 2)

The total charge induced on the sphere is

qi  o -- fV idS = -S0 0 (1 - s/o). (A 3)

For recombination, the steady-state diffusional-drift current j towards a central positive ion
satisfies (2.68), i.e.

V.j = V. [D exp (- V/k T) Vn- exp (V/k T)] = 0, (A 4)

subject to n = N- at infinity and to n = n. at the surface of the sink of radius S, respectively. When
the field V is neglected, the resulting Laplace's equation is solved to give the density

n-(R) = N-[l - (SIR) (I -ng/N-)]. (A 5)

The flux across any R-spherc is,

F-= 4rSD(1 -nslN-) N- ad(' -n/N- N- = aN-, (A6)
where a is the recombination rate a appropriate to instantaneous reaction (ns = 0). Analogy
with electrostatics then follows by identifying the local ion density n- with the local potential 0,
and the flux ofions across Swith the induced charge. Hence, the recombination rate a is equivalent
to 4xD times the 'induced charge q1' per unit 'external potential 00', and the transport rate ad is

. 4nrD times the 'induced charge q1' per unit 'potential difference (Os - 0) '. Introduce a reaction
rate a3 at S by aN-, (A7)

* . which equates the incident flux with the rate (0-1) of reaction. Thus the reaction rate a3a is 4tD
times the'induced charge qt' per'unit surface potential Os'. Thus a, a. and ad may be regarded as
appropriate capacitances of the sphere associated with potentials 0o, Os and Ojs - 0, respectively.
From (A6) and (A7), /a = l/a 3 + 1/ad, (A8)

showing that the overall rate (cm 3 s-1) is equivalent to a capacitance associated with potential 0.,
joined in series to a capacitance with potential 0, - 00. This analogy is similar in spirit to that of
Bates (1974).

For non-zero V, (A 4) can be reduced to Laplace's equation (A 1) via transformations (2.105)
and (2.107). The above analogy between 0 in (A I)-(A3) and nexp (V/kT) is preserved in
A-space. The equivalent solution is then

n-(R) = N- exp ( - V/kT) {1 - (9fR) (I - no exp [V(S)k T]IN-)}, (A 9)
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which is analogous with (A 2). With the aid of (2.105), the inward flux across any R-sphere is

F- = 41rR2Dexp(- V/kT)[dn(R)exp(V/kT)/dR] (A 10)

= 4nD N- 3{1 - (n./N-) exp [ V(S)/k T]}, (A 1 I)

such that, with (A 7), 1/a = I/arn+ I/at,. (A 12)

where the diffusional-drift transport rate that replaces ad is

= 4USD -- 4 f exp(V/kT) R-2 dR (A 13)

as in (2.115), and where the reaction rate is

arn = 23 exp[- V(S)/k T]. (A 14)

This analogy may be extended to cover the case where there are many non-overlapping
conducting and identical spheres. A charge on one reference sphere induces on the remaining
spheres an image charge that can be replaced by an induced charge and a dipole located at each
centre. A self-consistent set of charges and dipoles are set up. The recombination coefficient

pertinent to a large number of positive ions is then given by 4UD times the self-consistent'induced
charge' per unit potential 0 at infinity. This analogy furnishes a method whereby the com-
petition for flux between the various non overlapping sinks can be acknowledged and is therefore
relevant to the case of high ion density.

APPENDIX B. THE PECULIAR MEAN FREE PATH

The path length of an ion moving with speed vi in a gas of density N is defined by equation
(5.14) as L,(vi) = v/[NVkt(R)], (B 1)

t

where the denominator is the frequency vi for all elastic ion-neutral collisions that leave an
3 R-ion pair in all states of binding (bound and dissociative) at fixed internal separation R. Thus, the

collisional rate (cm 3 s1) between an ion i and a gas atom 3 is

-kit(R) - k'(E, Et, R) dEt- f G(v) dvsf go(g, 0,) d (cos 0,) dof da, (B 2)

where g=vt-v 3 ; P"=01'V^ (B3)

and where G is the distribution of gas speeds v.. The differential cross section for i-3 scattering in
the i-3 centre-of-mass reference frame is o, which for isotropic (hard-sphere) scattering inde-
pendent of the (thermal) impact speed is Q/4t in terms of the integral cross section Q. Hence

- Zkt(R) = Qfo G(v 3) dv3 (vt + 1vI/v), V1 >V,

QfG(va)dv(vs+ /vs), VI < V3, (B 4)

which reduces, for a Maxwellian distribution with respect to the centre of mass of the ion pair, to

" 5kit(R) IQ(v> [(2X t + Xri) 17i0 E(Xil) + exp(- X)], (B 5)

where X, = (IMtv/k T) (B 6)

35 Vol. 304. A
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in terms of the reduced mass M of the (ion-pair-gas) system, where

SE (4~) = J exp (_j£2) do fEIexp (-E) dE, (B 7)

is the probability integral (or error function), and where <V3> is the mean thermal speed
(8k T/lM) i of the gas atoms. The total rate (B 5) tends to Q <V3> and to Q vi as vi .-+ 0 and as
vi1 -> oo, respectively. Equation (5.35) for Liin the text is therefore recovered from (B 1) and (B 5.)

1.Wenttht L,(vj)/L 1 (c,) = iXi/[(2X + 1) ini nI5E,(Xl) + X~exp ( -X,)], (B 8)

increases monotonically with vi from zero to unity. The results (B 5) and (B 8) hold for either
elastic or charge-transfer ion-neutral collisions with cross sections Q assumed to be independent
of the relative speed.

This research is sponsored by the U.S. Air Force Office of Scientific Research under grant
no. AFOSR-80-0055.
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Analytical solution of the Debye-Smoluchowski equation
for geminate and homogeneous recombination

and for flourescence quenching

M. R. Flannery
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Closed-form analytical time-dependent solutions of the Debye-Smoluchowski equation
with a general spherical interaction are obtained for the important cases of geminate and
homogeneous recombination by diffusional drift in a gas of liquid medium. A relation-
ship between the time-dependent probability for recombination or escape in geminate
recombination and the transient rate for homogeneous recombination is established. An
expression for the rate of decay of emitted intensity in fluorescence quenching is also de-
rived.

" When a dissociated pair A and B is generated in- expressed as a generalized Fick's law by use in (2a)
stantaneously within a gas or liquid medium then of the Einstein relation (De =K kT) between the
the (A -B) pair may react internally or escape by diffusion coefficient D (cm 2 s- ') and mobility K
diffusional drift in the presence of a sink to infin- (cm2/statvolt s) for relative AB motion in the gas
ite separation. The key quantity in this geminate or liquid medium. Equation (1) is equivalent to
recombination process is the probability P(t) or the corresponding homogeneous equation solved
1(t) for recombination or survival, respectively, of subject to the partially absorbing boundary condi-
the dissociating pair at time t. When reaction oc- tion
curs between a central species A and another of the 4S 2J,(St=a3 n(Mt (3)
species B created within the medium by a continu-

" ous source at infinity (or else by escape from gem- which assumes that the net inward radial diffu-
inate recombination), then this recombination is sional-drift current at S is absorbed by reaction
homogeneous and is characterized by an effective within S.
two-body coefficient a(t) cm3s -1 appropriate to It has reety been shown' how analytical
termolecular reactions. Contact has recently been time-dependent solutions of (1) for an arbitrary
established' between the basic microscopic (phase- spherical interaction can, in general, be obtained in
space) theory of chemical reactions influenced by closed form via introduction of the transformation'
diffusional drift in a medium and the (Debye- from the variable R to
Smoluchowski) macroscopic equation of continuity i = 1- 40

an _ ~R fexpV/kT)R 2dR ' (4)

which then reduces (I) to a form capable of exact
for the probability density n (R,t) for finding an solution for R > the natural unit (n.u.) at which
AD pair with internal separation R >S. Here a 3 is the thermal (kT) and potential (M) energies are
•the local rate of reaction (via three-body AR . equal. It is the purpose of this communication to
lisions with the medium) for AR pairs brought to briefly summarize the key results obtained for
internal separation S by the diffusional-drift geminate and homogeneous recombination.
current I-- with Recombination is used here in its most general

7i(R,t)-Dfn(R,t)+(K/e)n(R,t)fV(R) (2a) sense of any chemical reaction influenced by dif-
fusional drift in a gas or liquid (electron-ion and

mD[exp( - V/kf ln(R,t)exp( V/kT)] ion-ion neutralization, coagulation of colloids, elec-
trolytic reactions, chemical conversions, etc.).

(2b) On setting
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A, apm a~ (ta

it in terms of the reaction rate at S,
S 7=tS (5 a"j~=a3exp-V(S)/k7J (10b)

then the hiomogeneous eqaincrrsodn to at S, and of the transport rate at S.
(1) mdcsto If 2G~,aTA =4wDS. (1c0

(I When GEM a, as at high N, then (9a) implies
ar FT dr &4 F2 r full absorption with zero n '(Ot) and when

a2n dfiN <~ < n E a, as a low N, then (9a) implies partial ab-
d'+I r J'dr iln (6) sorption with zero (an'/ar)0.

ii j ~1'For geminate recombination, the solution of (1),
which suggests the following twon procedu res for subject to the initial condition
solution: Assume (dr-/dr) remains constant such n (R'f =0) =.#0 (R -R 0 )/4irR' 0(la)
that introduction of

I dr-for instantaneous generation of X"0
AT) r (V a ~ xp u- V(R)kT] species Aat afixed dis-

dr tance AO from the central, and subject to the boun-
in (6) yields' dary condition

aF7).2n rT(7)n(R-oo,t)=0 (1 Ib)

which is the field-free diffusion equation in UrT) is determined from (Sb) and (9b) to be
3 ~space. Alternattively, since the coefficient on the ~ e /T

rih adside of (6), nRtA,) ep-vk t
righ han n(Rt;R0 S)=(4,rR2)(4Dt)1/2AI r der it[ 2 itx

ax IVkT J -aXexp(X2)exp(2l11X)erfc(X+fl1)

vanishes to O(R -3) for the Coulomb interaction
and is negligible fo 3 SRmS(e2/kT)I,(1a
then in terms of (4), and of the dimensionless quantities

an'(rO a2m.P,),(b A ')( R-S
af (Sb 2RR flh(R,t)=(RR-S

the one-dimensional diffusion equation in (rr) (D)1 4O

space. The radiation boundary condition (3) in /
casm (7b) and (8b) is X(O i)= 9ex[VS)kJ (12b)

an'1 f! '(Ot) (aI ~ =~ n aa For homsogeneous recomibination, the solution of
lin- 10 1!!- 1(1) subject to the initial and boundary conditions

or

!JtN V(S) WA 9)n (R -'W =0 -PNep ()kJ (3

respectively, where of a Boltzmann equilibrium distribution, is similarly
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n R,)= Noexp( - V/kT which tends at long times t >>S2 /D to
a,,N/(aRN +arjt). From the rate of decrease in

SI+ al the number of diffusional-drift species outside S
a T R the rate coefficient a(t) for homogenous recom-

bination is

x[exp(2flX)expX2erfc(X+fl)-erfcfl]I 1 dfn R ~ J

pR (14a)

where X(t) is defined in (12b), and where =a3n(St)/N, (16)

(A -S) 6k-.9) fdlwhere F. is the net inward flux generated con-
. (~T4D) tn (4D)t" 2  ' tinuously at infinity. With the aid of (14a),

since (dR/dR) is assumed constant. The solutions al(t)=a 11+ 1 IexpX2 (St)erfcX(St) (17)

" (12a) and (14a) are exact at all times over the re-
gion R 3  Mim=SR? where (Sa) can be assumed From (15d), (17), and (00a), we obtain
negligible and therefore hold over the relevant

V range R L Swhen S>R,. The steady-rate solu- a(t)-aRN(t)--aT 0(oo) (18)
tions obtained from (%) are exact over all R and between the transient rate a(t) for homogeneous
are identical with the t--* co ) limit of (12a) and reconbination and the transient recombination and
(14a). Both methods.based on (7b) and (8b),reobntnadthtasitrcmiainad(1..Bt ehdbsdo 7)ad(bescape probabilities :) and 1g(t), respectively.
respectively, Xield results which become identical When instantaneous generation of A occurs at

when [R/(dR/dR )] is replaced by R, as in (14b). Ro-S, i.e., reaction may immediately follow, then

The actual diffusion coefficient D in (2) has also the fractio number of A that be found at

been assumed constant, an assumption which de- time t within a sphencal shell of thickness dR and

pends on the density of the medium and therefore tmed at B is

valid3 when R >: R3 , and 0.2R, at 0.1, 1, and

20 atm, respectively, for Coulombic attraction. .7(R,t)dtR =4irIn(R,t;SS)dR/#o, (19)
The survival probability that each AB pair has for geminate recombination.

not reacted in geminate recombination, Figure I is a three-dimensional display of the

I .. variation of 5r(R,t) with both interseparation R [in
2(t)= X0 -"n nR,t;Ao,S~Ki, CI5a) units of the natural length (e 2/kT) and in intervals

where the integration is over all volume r external of 0.05 from R = 1.0, the assumed radius of the

to the surface J- of the spherical sink, is best sink, to R =2.2 and time t (in units of S 2/D and
from in intervals of 0.05 from 0.05 to 0.70) for geminateevaluated indirectly from recombination between positive and negative ions.

Here equal rates of transport and reaction are as-
rt -- * , o0  t)dt ("b) sumed such that 9(o) and (o) equal 0.5. Each

where the frequency of recombination is approximately right-to-left curve provides the
fixed-R variation of 5r(R,t) with t while each left-

.n 1 - to-right curve provides the fixed-time variation of
1 -. f, I ar Id=asn(Sct;RS) 050 Y(R,t) with R. The boundary curve Y(S,t) pro-

vides the variation with time of the recombination
: since Ji vanishes at infinity and within .Y. frequency -t) which decreases to zero as expected.

Without loss of generality, a coincident source This figure is a striking illustration of the evolu-
and sink (RomS} can be auumed in (05b) with tion with time and separation of an ion pair subject
(k) and (12a), so that the recombination probabil- to reaction and diffusional drift, i.e., of the gem-
ity is inate reconmbination process.

Figure 2 displays the time variation of the pro-
S(t) expX2(t)CrfcX(t)] (I5) bability (15d) for geminate recombination. The ini-

.TR ar' tial variation -0. 5( 1 - 1 .3 i /2) at short times is

,.
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as IAIs
es n ie " of A

tt-&7 FIGP1. 2. Variation ofteprobability for enat
ion-ion recomibination with time appropriate to the case

(-M f i.1

(0722 species B with an initial Boltzmann distribution.
FIG. 1. Evolution of the fractional number (R,: ;S) If the quenching species B are chemically inert

of ion pain per unit dAinterval with timne t[in units of or if nj > nA,then nis seffectively constant.
(S2/D)l and with interal separation A (in waits of With a(t) given by (17), the integral
A, e A nT appropriate to equal rates a n1  and aR of X ' x ~ rctransport and reaction, respectively, at a sink of radius 1+ I ~t- IX2[expX.erfcI

rapid in comparison with that -0.5 (1 - 0 .5r- 1/2) ( X//

* at asymptotic times. The bulk of the probability (22)
for geminate recomibination (19) is achieved effec- which varies as a,,Nt [ 1-0(11"2)] and as
tively instantaneously within a few S2/ID .. , P at[1 O~-0(U')J at short and long times, respec-

icassto 0.3 and 0.4 at -r= I and 5, respective- tively. Thus the decay law (21) is known exactly
* ly, afeaureappaentals fo thehomgenousat all times. Note that the collisional quenching

case with an initial Boltzmann distribution and pant of is4 Mt decreases initially as exp( -aRNt) and
continuous sourc of ionization, particularly for after long times as exp[ -a( co)tJ, as expected.

low as ensties Florecenc qunchng o exit- The full transient fluorescence is governed by (21)
*cited fluorphon A* of density n4(tM after an initial and (22) which is capable of experimental verifica-

incident lser pulse of excitation is governed by tion for any fluorphor-quencdher system in a gas or
dn 4 (t)liquid medium.

dt (?A'+a(0n()JnAW, (20)
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